Lecturer: Set up MATLAB
clear all
format compact
Exercises 3 - Elementary Signals#
To accompany Unit 2.3: Elementary Signals.
Follow along at cpjobling.github.io/eg-150-textbook/signals_and_systems/elementary_signals/examples3
Plot the Unit Step#
\(v_1(t) = A u_0(t)\)
syms t
u0(t) = heaviside(t); % allows us to type u0(t) in our formulae
A = 2; T = 2; % we need numerical values to get a successful plot
v1(t) = A*u0(t)
fplot(v1,'LineWidth',2),title('Unit step'),subtitle(texlabel('v_1(t) = Au_0(t)')),grid,xlabel('t')
Exercise 3.1: Other forms of unit step#
MATLAB Example
We will solve this example by hand and then give the solution in the MATLAB lab.
Use the MATLAB functions subplot
, heaviside
and fplot
to reproduce Fig. 22.

Fig. 22 Other forms of unit step function (Figure 1.8 [Karris, 2012])#
We’ve done the first row for you.
a). \(v_1(t) = -Au_0(t)\)
clf % clear figures
sgtitle('Other forms of the unit step function');
subplot(331)
v2(t) = -A*u0(t)
fplot(v1,'LineWidth',2),title(['a) ',texlabel('v_2(t) = -A*u_0(t)')]),grid,xlabel('t')
b). \(v_3(t) = -A(t - T)\)
subplot(332)
v3(t) = -A*u0(t - T)
fplot(v3(t),'LineWidth',2),title(['b) ',texlabel('v_3(t) = -A*u_0(t-T)')]),grid,xlabel('t')
c). \(v_4(t) = -A(t + T)\)
subplot(333)
v4(t) = -A*u0(t + T)
fplot(v4(t),'LineWidth',2),title(['c) ',texlabel('v_4(t) = -A*u_0(t+T)')]),xlabel('t')
d). \(v_5(t) = Au_0(-t)\)
e). \(v_6(t) = Au_0(-t + T)\)
f). \(v_7(t) = Au_0(-t - T)\)
g). \(v_8(t) = -Au_0(-t)\)
h). \(v_9(t) = -Au_0(-t + T)\)
i). \(v_{10}(t) = -Au_0(-t - T)\)
The result should look like Fig. 23.

Fig. 23 Other forms of unit step function (Figure 1.8 [Karris, 2012]) reproduced in MATLAB#
Exercise 3.2: Synthesis of Signals from Unit Step#
MATLAB Example
We will solve this example by hand and then give the solution in the MATLAB lab.
Unit step functions can be used to represent other time-varying functions such as rectangular pulses, square waves and triangular pulses.
a) Synthesize Rectangular Pulse#

b) Synthesize Square Wave#

c) Synthesize Symmetric Rectangular Pulse#

d) Synthesize Symmetric Triangular Pulse#

Exercise 3.3: Important properties of the delta function#
MATLAB Example
We will solve this example by hand and then give the solution in the MATLAB lab.
See the accompanying notes.
Evaluate the following expressions
a) \(3t^4\delta(t-1)\)
b)
Exercise 3.4: Signal Synthesis#
MATLAB Example
We will solve this example by hand and then give the solution in the MATLAB lab.

Fig. 24 Signal to be symthesized for Example 3.4#
a) Express the voltage waveform \(v(t)\) shown in Fig. 24 as a sum of unit step functions for the time interval \(-1 < t < 7\) s
b) Using the result of 3.6(a), compute the derivative of \(v(t)\) and sketch its waveform.
Lab Work#
In the second lab we will solve the examples indicated in these examples.