Laplace Transform Properties#

No.

Name

Time Domain \(f(t)\)

Complex Frequency Domain \(F(s)\)

1.

Linearity

\(a_1f_1(t)+a_2f_2(t)+\cdots+a_nf_n(t)\)

\(a_1F_1(s)+a_2F_2(s)+\cdots+a_nF_n(s)\)

2.

Time shifting

\(\displaystyle{f(t-a)}u_0(t-a)\)

\(\displaystyle{e^{-a s}F(s)}\)

3.

Frequency shifting

\(\displaystyle{e^{-as}f(t)}\)

\(\displaystyle{F(s+a)}\)

4.

Time scaling

\(f(a t)\)

\(\displaystyle{\frac{1}{a}F\left(\frac{s}{a}\right)}\)

5.

Time differentiation

\(\displaystyle{\frac{d}{dt}\,f(t)}\)

\(\displaystyle{sF(s)-f(0^-)}\)

6.

Frequency differentiation

\(\displaystyle{tf(t)}\)

\(\displaystyle{-\frac{d}{ds}F(s)}\)

7.

Time integration

\(\displaystyle{\int_{-\infty}^{t}f(\tau)d\tau}\)

\(\displaystyle{\frac{F(s)}{s}+ \frac{f(0^-)}{s}}\)

8.

Frequency integration

\(\displaystyle{\frac{f(t)}{t}}\)

\(\displaystyle{\int_s^\infty F(\sigma)\,d\sigma}\)

9.

Time Periodicity

\(\displaystyle{f(t + nT)}\)

\(\displaystyle{\frac{\int_0^T f(t)e^{-st}\,dt}{1 - e^{-sT}}}\)

10.

Initial value theorem

\(\displaystyle{\lim_{t\rightarrow 0} f(t)}\)

\(\displaystyle{\lim_{s\rightarrow \infty}sF(s) = f(0^-)}\)

11.

Final value theorem

\(\displaystyle{\lim_{t\rightarrow \infty} f(t)}\)

\(\displaystyle{\lim_{s\rightarrow 0}sF(s) = f(\infty)}\)

12.

Time convolution

\(\displaystyle{f_1(t)*f_2(t)}\)

\(\displaystyle{F_1(js) F_2(s)}\)

13.

Frequency convolution

\(\displaystyle{f_1(t)f_2(t)}\)

\(\displaystyle{\frac{1}{j2\pi}F_1(s)*F_2(s)}\)

See also: Wikibooks: Engineering_Tables/Laplace_Transform_Properties and Laplace Transform—WolframMathworld for more complete references.