Unit 4.3: Fourier Transforms for Circuit and LTI Systems Analysis#
Colophon#
An annotatable worksheet for this presentation is available as Worksheet 8.
The source code for this page is fourier_transform/3/ft3.md.
You can view the notes for this presentation as a webpage (Unit 4.3: Fourier Transforms for Circuit and LTI Systems Analysis).
This page is downloadable as a PDF file.
In this section we will apply what we have learned about Fourier transforms to some typical circuit problems. After a short introduction, the body of this chapter will form the basis of an examples class.
Agenda#
The system function
Examples
The System Function#
System response from the system impulse response#
Recall that the convolution integral of a system with impulse response
We let
Then by the time convolution property
The System Function#
We call
We note that the system function
Obtaining system response#
If we know the impulse resonse
Transform
Transform
Compute
Find
Examples#
Example 1#
Karris example 8.8: for the linear network shown below, the impulse response is
Solutions see: Worked Solutions
MATLAB verification of example 1#
format compact; % reduce whitesace for textbook presentation
syms t w
U1 = fourier(2*heaviside(t),t,w)
U1 =
2*pi*dirac(w) - 2i/w
H = fourier(3*exp(-2*t)*heaviside(t),t,w)
H =
3/(2 + w*1i)
Y1=simplify(H*U1)
Y1 =
3*pi*dirac(w) - 6i/(w*(2 + w*1i))
y1 = simplify(ifourier(Y1,w,t))
y1 =
(3*exp(-2*t)*(sign(t) + 1)*(exp(2*t) - 1))/2
Get y2
Substitute
y2 = subs(y1,t,t-3)
y2 =
(3*exp(6 - 2*t)*(sign(t - 3) + 1)*(exp(2*t - 6) - 1))/2
y = y1 - y2
y =
(3*exp(-2*t)*(sign(t) + 1)*(exp(2*t) - 1))/2 - (3*exp(6 - 2*t)*(sign(t - 3) + 1)*(exp(2*t - 6) - 1))/2
The result is equivalent to:
y = 3*heaviside(t) - 3*heaviside(t - 3) + 3*heaviside(t - 3)*exp(6 - 2*t) - 3*exp(-2*t)*heaviside(t)
Which after gathering terms gives
Plot result
fplot(y,[0,6])
title('Solution to Example 1')
ylabel('y(t)')
xlabel('t [s]')
grid

Example 2#
Karris example 8.9: for the circuit shown below, use the Fourier transfrom method, and the system function
MATLAB verification of example 2#
syms t w
H = j*w/(j*w + 2)
H =
(w*1i)/(2 + w*1i)
Vin = fourier(5*exp(-3*t)*heaviside(t),t,w)
Vin =
5/(3 + w*1i)
V_L=simplify(H*Vin)
V_L =
(w*5i)/((2 + w*1i)*(3 + w*1i))
v_L = simplify(ifourier(V_L,w,t))
v_L =
-(5*exp(-3*t)*(sign(t) + 1)*(2*exp(t) - 3))/2
The result is equivalent to:
vout = -5*exp(-3*t)*heaviside(t)*(2*exp(t) - 3)
Which after gathering terms gives
Plot result
fplot(v_L,[0,5])
title('Solution to Example 2')
ylabel('v_L(t) [V]')
xlabel('t [s]')
grid

Example 3#
Karris example 8.10: for the linear network shown below, the input-output relationship is:
where
Matlab verification of example 3#
syms t w
H = 10/(j*w + 4)
H =
10/(4 + w*1i)
Vin = fourier(3*exp(-2*t)*heaviside(t),t,w)
Vin =
3/(2 + w*1i)
Vout=simplify(H*Vin)
Vout =
30/((2 + w*1i)*(4 + w*1i))
vout = simplify(ifourier(Vout,w,t))
vout =
(15*exp(-4*t)*(sign(t) + 1)*(exp(2*t) - 1))/2
The result is equiavlent to:
15*exp(-4*t)*heaviside(t)*(exp(2*t) - 1)
Which after gathering terms gives
Plot result
fplot(vout,[0,5])
title('Solution to Example 3')
ylabel('vout(t) [V]')
xlabel('t [s]')
grid

Example 4#
Karris example 8.11: the voltage across a 1
Note from tables of integrals
MATLAB verification of example 4#
syms t w
Calcuate energy from the time function
Vr = 3*exp(-2*t)*heaviside(t);
R = 1;
Pr = Vr^2/R
Wr = int(Pr,t,0,inf)
double(Wr)
Pr =
9*exp(-4*t)*heaviside(t)^2
Wr =
9/4
ans =
2.2500
Calculate the energy using Parseval’s theorem
Fw = fourier(Vr,t,w)
Fw =
3/(2 + w*1i)
Fw2 = simplify(abs(Fw)^2)
Fw2 =
9/abs(2 + w*1i)^2
Wr=2/(2*pi)*int(Fw2,w,0,inf)
double(Wr)
Wr =
(51607450253003931*pi)/72057594037927936
Wr =
2.2500
See ft3_ex4.m
Worked Solutions#
Example 1: ft3-ex1.pdf
Example 2: ft3-ex2.pdf
Example 3: ft3-ex3.pdf
Example 3: ft3-ex4.pdf
MATLAB Solutions#
Example 1: ft3_ex1.mlx
Example 2: ft3_ex2.mlx
Example 3: ft3_ex3.mlx
Example 4: ft3_ex4.mlx