Table of Z-Transforms#
|
f[n] |
F(z). |
Region of Convergence |
---|---|---|---|
1. |
\(\displaystyle{\delta[n]}\) |
\(\displaystyle{1}\) |
|
2 |
\(\displaystyle{\delta[n-m]}\) |
\(\displaystyle{z^{-m}}\) |
|
3 |
\(\displaystyle{a^nu_0[n]}\) |
\(\displaystyle{\frac{z}{z-a}}\) |
\(\mid z \mid > a\) |
4 |
\(\displaystyle{u_0[n]}\) |
\(\displaystyle{\frac{z}{z-1}}\) |
\(\mid z \mid > 1\) |
5 |
\(\displaystyle{(e^{-anT_s})u_0[n]}\) |
\(\displaystyle{\frac{z}{z-e^{-aT_s}}}\) |
\(\displaystyle{\mid e^{-aT_s}z^{-1} \mid < 1}\) |
6 |
\(\displaystyle{(\cos naT_s)u_0[n]}\) |
\(\displaystyle{\frac{z^2 - z\cos aT_s}{z^2 -2z\cos aT_s + 1}}\) |
\({ \mid z \mid> 1}\) |
7 |
\(\displaystyle{(\sin naT_s)u_0[n]}\) |
\(\displaystyle{\frac{z\sin aT_s}{z^2 -2z\cos aT_s + 1}}\) |
\({\mid z \mid > 1}\) |
8 |
\(\displaystyle{(a^n\cos naT_s)u_0[n]}\) |
\(\displaystyle{\frac{z^2 - az\cos aT_s}{z^2 -2az\cos aT_s + a^2}}\) |
\({\mid z \mid > 1}\) |
9 |
\(\displaystyle{(a^n\sin naT_s)u_0[n]}\) |
\(\displaystyle{\frac{az\sin aT_s}{z^2 -2az\cos aT_s + a^2}}\) |
\({\mid z \mid > 1}\) |
10 |
\(\displaystyle{u_0[n]-u_0[n-m]}\) |
\(\displaystyle{\frac{z^m-1}{z^{m-1}(z-1)}}\) |
|
11 |
\(\displaystyle{nu_0[n]}\) |
\(\displaystyle{\frac{z}{(z-1)^2}}\) |
|
12 |
\(\displaystyle{n^2u_0[n]}\) |
\(\displaystyle{\frac{z(z+1)}{(z-1)^3}}\) |
|
13 |
\(\displaystyle{[n+1]u_0[n]}\) |
\(\displaystyle{\frac{z^2}{(z-1)^2}}\) |
|
14 |
\(\displaystyle{a^n n u_0[n]}\) |
\(\displaystyle{\frac{az}{(z-a)^2}}\) |
|
15 |
\(\displaystyle{a^n n^2 u_0[n]}\) |
\(\displaystyle{\frac{az(z+a)}{(z-a)^3}}\) |
|
16 |
\(\displaystyle{a^n n[n+1] u_0[n]}\) |
\(\displaystyle{\frac{2az^2}{(z-a)^3}}\) |
See also: Wikibooks: Engineering_Tables/Z_Transform_Table and Z-Transform—WolframMathworld for more complete references.