Table of Z-Transforms#

 

f[n]

F(z).

Region of Convergence

1.

\(\displaystyle{\delta[n]}\)

\(\displaystyle{1}\)

2

\(\displaystyle{\delta[n-m]}\)

\(\displaystyle{z^{-m}}\)

3

\(\displaystyle{a^nu_0[n]}\)

\(\displaystyle{\frac{z}{z-a}}\)

\(\mid z \mid > a\)

4

\(\displaystyle{u_0[n]}\)

\(\displaystyle{\frac{z}{z-1}}\)

\(\mid z \mid > 1\)

5

\(\displaystyle{(e^{-anT_s})u_0[n]}\)

\(\displaystyle{\frac{z}{z-e^{-aT_s}}}\)

\(\displaystyle{\mid e^{-aT_s}z^{-1} \mid < 1}\)

6

\(\displaystyle{(\cos naT_s)u_0[n]}\)

\(\displaystyle{\frac{z^2 - z\cos aT_s}{z^2 -2z\cos aT_s + 1}}\)

\({ \mid z \mid> 1}\)

7

\(\displaystyle{(\sin naT_s)u_0[n]}\)

\(\displaystyle{\frac{z\sin aT_s}{z^2 -2z\cos aT_s + 1}}\)

\({\mid z \mid > 1}\)

8

\(\displaystyle{(a^n\cos naT_s)u_0[n]}\)

\(\displaystyle{\frac{z^2 - az\cos aT_s}{z^2 -2az\cos aT_s + a^2}}\)

\({\mid z \mid > 1}\)

9

\(\displaystyle{(a^n\sin naT_s)u_0[n]}\)

\(\displaystyle{\frac{az\sin aT_s}{z^2 -2az\cos aT_s + a^2}}\)

\({\mid z \mid > 1}\)

10

\(\displaystyle{u_0[n]-u_0[n-m]}\)

\(\displaystyle{\frac{z^m-1}{z^{m-1}(z-1)}}\)

11

\(\displaystyle{nu_0[n]}\)

\(\displaystyle{\frac{z}{(z-1)^2}}\)

12

\(\displaystyle{n^2u_0[n]}\)

\(\displaystyle{\frac{z(z+1)}{(z-1)^3}}\)

13

\(\displaystyle{[n+1]u_0[n]}\)

\(\displaystyle{\frac{z^2}{(z-1)^2}}\)

14

\(\displaystyle{a^n n u_0[n]}\)

\(\displaystyle{\frac{az}{(z-a)^2}}\)

15

\(\displaystyle{a^n n^2 u_0[n]}\)

\(\displaystyle{\frac{az(z+a)}{(z-a)^3}}\)

16

\(\displaystyle{a^n n[n+1] u_0[n]}\)

\(\displaystyle{\frac{2az^2}{(z-a)^3}}\)

See also: Wikibooks: Engineering_Tables/Z_Transform_Table and Z-Transform—WolframMathworld for more complete references.