Properties of the Fourier Transform#

No.

Name

\(f(t)\)

\(F(j\omega)\)

Remarks

1.

Linearity

\(a_1f_1(t)+a_2f_2(t)+\cdots+a_nf_n(t)\)

\(a_1F_1(j\omega)+a_2F_2(j\omega)+\cdots+a_nF_n(j\omega)\)

Fourier transform is a linear operator.

2.

Symmetry

\(2\pi f(-j\omega)\)

\(F(t)\)

3.

Time and frequency scaling

\(f(\alpha t)\)

\(\displaystyle{\frac{1}{\lvert\alpha\rvert}F\left(j\frac{\omega}{\alpha}\right)}\)

time compression is frequency expansion and vice versa

4.

Time shifting

\(\displaystyle{f(t-t_0)}\)

\(\displaystyle{e^{-j\omega t_0}F(j\omega)}\)

A time shift corresponds to a phase shift in frequency domain

5.

Frequency shifting

\(\displaystyle{e^{j\omega_0 t}f(t)}\)

\(\displaystyle{F(j\omega-j\omega_0)}\)

Multiplying a signal by a complex exponential results in a frequency shift.

6.

Time differentiation

\(\displaystyle{\frac{d^n}{dt^n}\,f(t)}\)

\(\displaystyle{(j\omega)^nF(j\omega)}\)

7.

Frequency differentiation

\(\displaystyle{(-jt)^n f(t)}\)

\(\displaystyle{\frac{d^n}{d\omega^n}F(j\omega)}\)

8.

Time integration

\(\displaystyle{\int_{-\infty}^{t}f(\tau)d\tau}\)

\(\displaystyle{\frac{F(j\omega)}{j\omega}+\pi F(0)\delta(\omega)}\)

9.

Conjugation

\(\displaystyle{f^*(t)}\)

\(\displaystyle{F^*(-j\omega)}\)

10.

Time convolution

\(\displaystyle{f_1(t)*f_2(t)}\)

\(\displaystyle{F_1(j\omega) F_2(j\omega)}\)

Compare with Laplace Transform

11.

Frequency convolution

\(\displaystyle{f_1(t)f_2(t)}\)

\(\displaystyle{\frac{1}{2\pi}F_1(j\omega)*F_2(j\omega)}\)

This has application to amplitude modulation as shown in Boulet pp 182—183.

12.

Area under \(f(t)\)

\(\displaystyle{\int_{-\infty}^{\infty} f(t)\,dt = F(0)}\)

Way to calculate DC (or average) value of a signal

13.

Area under \(F(j\omega)\)

\(\displaystyle{f(0) = \frac{1}{2\pi}\int_{-\infty}^{\infty}F(j\omega)\,d\omega}\)

14.

Energy-Density Spectrum

\(\displaystyle{E_{[\omega_1,\omega_2]}:=\displaystyle{\frac{1}{2\pi}\int_{\omega_1}^{\omega_2}\lvert F(j\omega)\rvert ^2\,d\omega.}}\)

15.

Parseval’s theorem

\(\displaystyle{\int_{-\infty}^{\infty}\lvert f(t)\rvert^2\,dt=\displaystyle{\frac{1}{2\pi}\int_{-\infty}^{\infty}\lvert F(j\omega)\rvert ^2\,d\omega.}}\)

Definition RMS follows from this

See also: Wikibooks: Engineering Tables/Fourier Transform Properties and Fourier Transform—WolframMathworld for more complete references.