Properties of the Fourier Transform

Properties of the Fourier Transform#

No.

Name

f(t)

F(jω)

Remarks

1.

Linearity

a1f1(t)+a2f2(t)++anfn(t)

a1F1(jω)+a2F2(jω)++anFn(jω)

Fourier transform is a linear operator.

2.

Symmetry

2πf(jω)

F(t)

3.

Time and frequency scaling

f(αt)

1|α|F(jωα)

time compression is frequency expansion and vice versa

4.

Time shifting

f(tt0)

ejωt0F(jω)

A time shift corresponds to a phase shift in frequency domain

5.

Frequency shifting

ejω0tf(t)

F(jωjω0)

Multiplying a signal by a complex exponential results in a frequency shift.

6.

Time differentiation

dndtnf(t)

(jω)nF(jω)

7.

Frequency differentiation

(jt)nf(t)

dndωnF(jω)

8.

Time integration

tf(τ)dτ

F(jω)jω+πF(0)δ(ω)

9.

Conjugation

f(t)

F(jω)

10.

Time convolution

f1(t)f2(t)

F1(jω)F2(jω)

Compare with Laplace Transform

11.

Frequency convolution

f1(t)f2(t)

12πF1(jω)F2(jω)

This has application to amplitude modulation as shown in Boulet pp 182—183.

12.

Area under f(t)

f(t)dt=F(0)

Way to calculate DC (or average) value of a signal

13.

Area under F(jω)

f(0)=12πF(jω)dω

14.

Energy-Density Spectrum

E[ω1,ω2]:=12πω1ω2|F(jω)|2dω.

15.

Parseval’s theorem

|f(t)|2dt=12π|F(jω)|2dω.

Definition RMS follows from this

See also: Wikibooks: Engineering Tables/Fourier Transform Properties and Fourier Transform—WolframMathworld for more complete references.