Common Fourier Transform Pairs#

Name

\(f(t)\)

\(F(\omega)\)

Remarks

1.

Dirac delta

\(\delta(t)\)

\(1\)

Constant energy at all frequencies.

2.

Time sample

\(\delta(t-t_0)\)

\(e^{-j\omega t_0}\)

3.

Phase shift

\(e^{j\omega_0 t}\)

\(2\pi\delta(\omega - \omega_0)\)

4.

Signum

\(\operatorname{sgn} t\)

\(\displaystyle{\frac{2}{j\omega}}\)

also known as sign function

5.

Unit step

\(u_0(t)\)

\(\displaystyle{\frac{1}{j\omega}+\pi\delta(\omega)}\)

6.

Cosine

\(\cos \omega_0 t\)

\(\pi\left[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)\right]\)

7.

Sine

\(\sin \omega_0 t\)

\(-j\pi\left[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)\right]\)

8.

Single pole

\(e^{-at}u_0(t)\)

\(\displaystyle{\frac{1}{j\omega + a}}\)

\(a \gt 0\)

9.

Double pole

\(te^{-at}u_0(t)\)

\(\displaystyle{\frac{1}{(j\omega + a)^2}}\)

\(a \gt 0\)

10.

Complex pole (cosine component)

\(e^{-at}\cos \omega_0 t\;u_0(t)\)

\(\displaystyle{\frac{j\omega + a}{(j\omega + a)^2+\omega_0^2}}\)

\(a\gt 0\)

11.

Complex pole (sine component)

\(e^{-a t}\sin \omega_0 t\;u_0(t)\)

\(\displaystyle{\frac{\omega}{(j\omega + a)^2+\omega_0^2}}\)

\(a\gt 0\)

See also: Wikibooks: Engineering Tables/Fourier Transform Table and Fourier Transform—WolframMathworld for more complete references.