Properties of the Z-Transform#

 

Property

Discrete Time Domain

\(\displaystyle{\mathcal{Z}}\) Transform

1

Linearity

\(\displaystyle{af_1[n]+bf_2[n]+\cdots}\)

\(\displaystyle{aF_1(z)+bF_2(z)+\cdots}\)

2

Shift of \(\displaystyle{x[n]u_0[n]}\)

\(\displaystyle{f[n-m]u_0[n-m]}\)

\(\displaystyle{z^{-m}F(z)}\)

3

Left shift

\(\displaystyle{f[n-m]}\)

\(\displaystyle{z^{-m}F(z)+\sum_{n=0}^{m-1}f[n-m]z^{-n}}\)

4

Right shift

\(\displaystyle{f[n+m]}\)

\(\displaystyle{z^{m}F(z)+\sum_{n=-m}^{-1}f[n+m]z^{-n}}\)

5

Multiplication by \(\displaystyle{a^n}\)

\(\displaystyle{a^nf[n]}\)

\(\displaystyle{F\left(\frac{z}{a}\right)}\)

6

Multiplication by \(\displaystyle{e^{-nsT_s}}\)

\(\displaystyle{e^{-nsT_s}f[n]}\)

\(\displaystyle{F\left(e^{sT_s}z\right)}\)

7

Multiplication by \(\displaystyle{n}\)

\(\displaystyle{nf[n]}\)

\(\displaystyle{-z\frac{d}{dz}F(z)}\)

8

Multiplication by \(\displaystyle{n^2}\)

\(\displaystyle{n^2f[n]}\)

\(\displaystyle{-z\frac{d}{dz}F(z)+z^2\frac{d^2}{dz^2}F(z)}\)

9

Summation in time

\(\displaystyle{\sum_{m=0}^{n}f[m]}\)

\(\displaystyle{\frac{z}{z-1}F(z)}\)

10

Time convolution

\(\displaystyle{f_1[n]*f_2[n]}\)

\(\displaystyle{F_1(z)F_2(z)}\)

11

Frequency convolution

\(\displaystyle{f_1[n]f_2[n]}\)

\(\displaystyle{\frac{1}{j2\pi }\oint {x{F_1}(v){F_2}\left( {\frac{z}{v}} \right)} {v^{ - 1}}dv}\)

12

Initial value theorem

\(\displaystyle{f[0]=\lim_{z\to\infty}F(z)}\)

13

Final value theorem

\(\displaystyle{\lim_{n\to\infty}f[n]=\lim_{z\to 1}(z-1)F(z)}\)

See also: Wikibooks: Engineering_Tables/Z_Transform_Properties and Z-Transform—WolframMathworld for more complete references.