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To accompany Unit 4.1 Defining the Fourier Transform

Colophon
This worksheet can be downloaded as a PDF file. We will step through this worksheet in class.

An annotatable copy of the notes for this presentation will be distributed before the second class meeting as Worksheet 6

in the Week 5: Classroom Activities section of the Canvas site. I will also distribute a copy to your personal Worksheets

section of the OneNote Class Notebook so that you can add your own notes using OneNote.

You are expected to have at least watched the video presentation of Unit 4.1: Defining the Fourier Transform of the notes

before coming to class. If you haven’t watch it afterwards!

After class, the lecture recording and the annotated version of the worksheets will be made available through Canvas.

Fourier Transform as the Limit of a Fourier Series
We start by considering the pulse train that we used in the last lecture and demonstrate that the discrete line spectra for the

Fourier Series becomes a continuous spectrum as the signal becomes aperiodic.

This analysis is from Boulet pp 142—144 and 176—180.

Let  be the Fourier series of the rectangular pulse train shown below:~x(t)
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Fourier Series

In the previous section we used

to compute the line spectra.

From the Time Point of View

If we instead take a time point-of-view and let 

Let’s complete the analysis on the virtual whiteboard.

Ck =
1

2π
∫

π/w

−π/w
Ae−jk(Ω0t) d(Ω0t) =

A

2π
∫

π/w

−π/w
e−jk(Ω0t) d(Ω0t)

A = 1

Ck =
1

T
∫

t0

−t0

e−jkΩ0t dt.
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The Sinc Function

The function,  crops up again and again in Fourier analysis. The Fourier coefficients  are scaled samples of

the real continuous normalized sinc function defined as follows:

The function is equal to 1 at  and has zero crossings at  as shown below.

Plot the sinc function

Plots:

Duty cycle

We define the duty cycle  of the rectangular pulse train as the fraction of the time the signal is “on” (equal to

1) over one period.

The duty cycle is often given as a percentage.

The spectral coefficients expressed using the normalized sinc function and the duty cycle can be written as

Normalize the spectral coefficients

Let us normalize the spectral coefficients of  by mutiplying them by , and assume  is fixed so that the duty cycle

 will decrease as we increase :

sin(πx)/πx Ck

sincu :=
sinπu

πu
, u ∈ R.

u = 01 u = ±n, n = 1, 2, 3,…

sinc(u) =
sinπu

πu
, u ∈ R

clear all
cd ../matlab
format compact

x = linspace(-5,5,1000);
plot(x,sin(pi.*x)./(pi.*x))
grid
title('Graph of sinc function')
ylabel('sinc(u)')
xlabel('u')

η = 2t0/T

Ck =
2t0
T

sin( πk2t0
T )

πk2t0
T

=
2t0
T

sinc(
k2t0
T

)

Ck = η sinc (kη)

~x(t) T t0

η = 2t0/T T
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Then the normalized coefficents  of the rectangular wave is a sinc envelope with constant amplitude at the origin equal

to , and a zero crossing at fixed frequency  rad/s, both independent of .

Demo

Run duty_cycle with values of:

50% ( )

25% ( )

12.5% ( )

5% ( )

Comments

As the fundamental period increases, we get more spectral lines packed into the lobes of the sinc envelope.

These normalized spectral coefficients turn out to be samples of the continuous sinc function on the spectrum of 

The two spectra are plotted against the frequency variable  with units of rad/s rather than index of harmonic

component

The first zeros of each side of the main lobe are at frequencies  rad/s

The zero-crossing points of sinc envelope are independent of the period T. They only depend on .

Intuition leading to the Fourier Transform

An aperiodic signal that has been made periodic by “repeating” its graph every  seconds will have a line spectrum that

becomes more and more dense as the fundamental period is made longer and longer.

The line spectrum has the same continuous envelope.

As  goes to infinity, the line spectrum will become a continuous function of .

The envelope is the function that represents the Fourier transform.

Doing the Maths

See the notes Not Examiminable.

Inverse Fourier Transform:

Similarly, given the expression we have already seen for an arbitrary :

Fourier Transform:

TCk = Tη sinc (kη) = 2t0 sinc(k
2t0
T

)

TCk

2t0 π/t0 T

open duty_cycle

η = 1/2

η =?

η =?

η =?

~x(t)

kω0

ω = ±π/t0

t0

T

T ω

x(t) =
1

2π
∫

∞

−∞
X(jω)ejωt dω := F

−1 {X(jω)}

x(t)
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Fourier Transform Pair

The two equations on the previous slide are called the Fourier transform pair.

Properties of the Fourier Transform
Again, we will provide any properties that you might need in the examination.

You will find a number of these in the accompanying notes.

Table of Properites of the Fourier Transform
As was the case of the Laplace Transform, properties of Fourier transforms are usually summarized in Tables of Fourier

Transform properties. For example this one: Properties of the Fourier Transform (Wikpedia) and Table 8.8 in Karris (page 8-

17).

More detail and some commentry is given in the printable version of these notes.

X(jω) = ∫
∞

−∞
x(t)e−jωt dt := F {x(t)}.
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No. Name Remarks

1. Linearity Fourier

transform is

a linear

operator.

2. Symmetry

3. Time and

frequency

scaling

time

compression

is frequency

expansion

and vice

versa

4. Time shifting A time shift

corresponds

to a phase

shift in

frequency

domain

5. Frequency

shifting

Multiplying a

signal by a

complex

exponential

results in a

frequency

shift.

6. Time

differentiation

7. Frequency

differentiation

8. Time

integration

9. Conjugation

10. Time

convolution

Compare

with Laplace

Transform

11. Frequency

convolution

This has

application

to amplitude

modulation

as shown in

Boulet pp

182—183.

12. Area under Way to

calculate DC

(or average)

f(t) F(jω)

a1f1(t) + a2f2(t) +⋯+ anfn(t) a1F1(jω) + a2F2(jω) +⋯+ anFn(jω)

2πf(−jω) F(t)

f(αt) 1

|α|
F (j

ω

α
)

f(t− t0) e−jωt0F(jω)

ejω0tf(t) F(jω− jω0)

dn

dtn
f(t) (jω)nF(jω)

(−jt)nf(t) dn

dωn
F(jω)

∫
t

−∞

f(τ)dτ
F(jω)

jω
+ πF(0)δ(ω)

f ∗(t) F ∗(−jω)

f1(t) ∗ f2(t) F1(jω)F2(jω)

f1(t)f2(t) 1

2π
F1(jω) ∗ F2(jω)

f(t)
∫

∞

−∞
f(t) dt = F(0)

Skip to main content



See also: Wikibooks: Engineering Tables/Fourier Transform Properties and Fourier Transfom—WolframMathworld for more

complete references.

Examples
1. Amplitude Modulation

2. Impulse response

3. Energy computation

Example 1: Amplitude Modulation

Compute the result of multiplying a signal  by a carrier waveform .

Hint use Euler’s identity and the frequency shift property

Example 2: Impulse response

A system has impulse response . Compute the frequency sprectrum  of this system.

No. Name Remarks

value of a

signal

13. Area under

14. Energy-

Density

Spectrum

15. Parseval’s

theorem

Definition of

RMS follows

from this

f(t) F(jω)

F(jω)
f(0) =

1

2π
∫

∞

−∞
F(jω) dω

E[ω1,ω2] :=
1

2π
∫

ω2

ω1

|F(jω)|2 dω.

∫
∞

−∞
|f(t)|2 dt =

1

2π
∫

∞

−∞
|F(jω)|2 dω.

f(t) cosωct

h(t) = e−tu0(t) H(jω)
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Example 3: Energy computation

An aperiodic real signal  has Fourier transform . Compute the energy contained the signal between 5kHz and

10kHz.

Computing Fourier Transforms in Matlab
MATLAB has the built-in fourier and ifourier functions that can be used to compute the Fourier transform and its inverse.

We will explore some of these in the next class.

For now, here’s an example:

Example

Use MATLAB to confirm the Fourier transform pair:

Check by computing the inverse using ifourier

Previous
Worksheet 5

Next
Worksheet 7

f(t) F(jω)

e−
1
2 t

2

⇔ √2πe−
1
2 ω

2

syms t v omega x;
ft = exp(-t^2/2);
Fw = fourier(ft,omega)

pretty(Fw)

ft = ifourier(Fw)
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