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This worksheet can be downloaded as a PDF file. We will step through this worksheet in

class.

An annotatable copy of the notes for this presentation will be distributed before the

second class meeting as Worksheet 5 in the Week 4: Classroom Activities section of

the Canvas site. I will also distribute a copy to your personal Worksheets section of the

OneNote Class Notebook so that you can add your own notes using OneNote.

You are expected to have at least watched the video presentation of Unit 3.4: Applications

of Line Spectra of the notes before coming to class. If you haven’t watch it afterwards!

After class, the lecture recording and the annotated version of the worksheets will be

made available through Canvas.

Power in Periodic Signals
In your previous courses you may have come across the definitions of Signal Energy,

Average Signal Power and Root Mean Square Power:Skip to main content
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Parseval’s Theorem

Parseval’s Theorem states that the total average power of a periodic signal  is equal to

the sum of the average powers of all its harmonic components.

The power in the th harmonic  is given by

Since , the total power of the th harmomic is .

You should note that  so .

Parseval’s theorem states that

RMS Power
By a similar argument:
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Example 6

Compute the average power of a pulse train for which the pulse width is  (duty cycle

50%). Use the result:

as your starting point.

Solution

Example 7: Power Spectrum

Compute and display the power spectrum for the signal of Example 6.

PRMS = √ 1

T
∫

T

0
|f(t)|2

dt =
∞

∑
k=−∞

|Ck|2.

⎷ T/2

Ck =
A

w
.

sin(kπ/w)

kπ/w

clear all
cd ../matlab
format compact
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Power spectrum

Note that most of the power is concentrated at DC and in the first seven harmonic

components. That is in the frequency range  rad/s.

Total Harmonic Distortion

Suppose that a signal that is supposed to be a pure sine wave of amplitude A is distorted

as shown below

This can occur in the line voltages of an industrial plant that makes heavy use of

nonlineear loads such as electric arc furnaces, solid state relays, motor drives, etc (E.g.

Tata Steel!)

A = 1; w = 8; [f,omega] = pulse_fs(A,w,15);

stem(omega,abs(f).^2)
title('Power Spectrum for pulse width T/8')
ylabel('|C_k|^2')
xlabel('\Omega_0 [rad/s]')

[−14π/T , +14π/T ]
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THD Defined

Clearly, some of the harmonics for  are nonzero. One way to characterize the

distortion is to compute the ratio of average power in all the harmonics that “should not be

present”, that is for , to the total average power of the distorted sine wave. The

square-root of this ratio is called the total harmonic distortion (THD) of the signal.

If the signal is real and based on a sine wave (that is odd), then  and

and we can define the THD as the ratio of the RMS value for all the harmonics for 

(the distortion) to the RMS of the fundamental which is $ $

k ≠ ±1

k > 1
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Computation of THD

Example 8: THD in a square-wave

Given that the exponential fourier series coefficients for a square wave are

compute the total harmonic distortion represented by the first 7 harmonics of the square-

wave.

C0 = 0

Ck = 0 k even

Ck =
2A

jkπ
k odd
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Solution

Example 9: THD in a triangle wave

Given that the exponential fourier series coefficients for a triangle wave with even

symmetry is

compute the total harmonic distortion represented by the first 7 harmonics of the triangle-

wave.

Steady-State Response of an LTI System to a
Periodic Signal
The response of an LTI system with impulse response  to a complex exponential signal

 is the same complex exponential multiplied by a complex gain: ,

where:

C0 = 0

Ck = 0 k even

Ck = −
4A

jk2π2
k odd

h(t)

est y(t) = H(s)est
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In particular, for , the output is simply .

The complex functions  and  are called the system’s transfer function and

frequency response, respectively.

By superposition

The output of an LTI system to a periodic function with period  represented by a Fourier

series is given by:

where  is the fundamental frequency.

Thus  is a Fourier series itself with coefficients :

(16)

Illustration

This picture below shows the effect of an LTI system on a periodic input in the frequency

domain.

H(s) = ∫
∞

−∞
h(τ)e−sτ dτ.

s = jω y(t) = H(jω)ejωt

H(s) H(jω)

T

y(t) =
∞

∑
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Ω0 = T/2π

y(t) Dk

Dk = CkH(jkΩ0)
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Application to signal processing

A consequence of the previous result is that we can design a system that has a desirable

frequency spectrum  that retains certain frequencies and cuts off others.

Filter attenuation

The effect of an LTI system on a periodic input signal is to modify its Fourier series through

a multiplication by its frequency response evaluated at the harmonic frequencies.

So what does  looks like.

[change this to an RC circuit filter]

As an example, consider the simple first-order Butterworth low-pass (LP) filter with cut-off

frequency :

For this filter

Let us say that we wish to compute the attenuation and phase of this filter at .

To compute the magnitude: $ $

We note that is  so the filter will attenuate the incoming harmonic frequency.

This will be true for all harmonics, so in general, for a LP filter:

H(jkΩ0)

H(jkΩ0)

ωc

H(s) =
ωc

s + ωc

H(jω) =
ωc

jω + ωc

.

ω = Ω0

|H(jΩ0)| =
ωc

jΩ0 + ωc

=
ωc

√Ω2
0 + ω2

c∣ ∣|H(jΩ0| < 1

Dk = Ck |H(jkΩ0)| < Ck.
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The phase will be given by $

$

Phases are additive so $ $

By doing such analysis, we can examine the effect of a filter on a periodic signal, just by

considering how the coefficients of the harmonic terms are changed (attenuated in

magnitude and shifted in phase) by the filter.

Example 10: Low-pass filter

This is an examination level question.

This example represents the low-pass filter used in the signal generator project for EG-

152: Analogue Design.

Use MATLAB to complete this example.

a) A triangle waveform  with frequency  is shown in Fig. 11.

Fig. 11 A triangle waveform

ϕ = ∠H(jω) = tan−1 ( I(H(jω))
R(H(j(ω)) )where

H(jkΩ0) =
ω2
c

(kΩ0)2 + ω2
c

− j
kΩ0ωc

(kΩ0)2 + ω2
c

ϕk = tan−1 (−
KΩ0ωc

ω2
c

)

= tan−1 (−
kΩ0

ωc

)

∠Dk = ∠Ck + ϕk.

x(t) Ω0 = 2π/T

Note
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Determine the exponential Fourier series coefficients  for this waveform and use this

result to show that the trigonomentric Fourier series for a triangle waveform is

(17)

which, for the first seven harmonic frequencies, is given as

Solution

b) In the signal generator, the block diagram for which is given in Fig. 12, a triangle

wavefom with  and frequency  kHz, is filtered by the low-pass

filter with transfer function

Ck

x(t) =
8A

π2
(∑

k odd

(−1)(
k−1

2 ) 1

k2
sin kΩ0t)

x(t) ≈
8A

π2
(sin Ω0t −

1

9
sin 3Ω0t +

1

25
sin 5Ω0t −

1

49
sin 7Ω0t⋯)

A = 10 f = 1/T = 2.5
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where  and  is the time constant of an RC circuit with  kΩ and

 nF.

Fig. 12 A signal generator

i) Determine the frequency response  of the filter.

Solution

ii) Compute the cut-off frequency  of the filter. Note the value of the cut-off frequency

this is the frequency for which the filter transmits half-the power or

H(s) =
a2

s2 + 3as + a2

a = 1/(RC) RC R = 8.2

C = 10

H(jω)

ωc

|H(jωc)| =
1

√2
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Solution

iii) Use equation (16) and the result of a) to determine the attenuation in the first 7

harmonics of the triangle waveform.

Solution

iv) The filter is intended to generate a sinewave from the triangle wave. Determine the

value of the recovery gain  to ensure that the attenuation is 0 dB at 2.5 kHz. Recompute

the harmonic attenuation given the presence of .

K

K
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Solution

Solution

v) Use these results to determine the THD (in dB) of the filtered waveform.

Solution
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vi) Use the attached Simulink model ( ex19_5.slx) of the the filter to validate the results.

Comment on the quality of the design.

Previous
Worksheet 4

Next
Worksheet 6

cd ../matlab
% For Simulink model
R = 8.2e3; % 8.2 kOhm
C = 10e-9; % 10 nF
a = (1/(R*C)); % filter coefficient
K = 1 % replace wthis value with the value computed in Ex 19.5(b)(iv)
Hs = tf(a^2,[1 3*a a^2])
bode(Hs),grid
ex19_5
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