Unit 3.2: Exponential Fourier Series

Contents

- Colophon
- Agenda
- The Exponential Function $e^{a t}$
- The Exponential Fourier Series
- Symmetry in exponential Fourier series
- Example 1
- Exponential Fourier series for the square wave with odd symmetry
- Trig. Fourier series from exponential Fourier series
- Computing coefficients of Exponential Fourier Series in MATLAB
- Summary
- Answers to in-class problems

Colophon

An annotatable worksheet for this presentation is available as Worksheet 3.

- The source code for this page is fourier_series/2/exp_fs1.md.
- You can view the notes for this presentation as a webpage (Unit 3.2: Exponential Fourier Series).
- This page is downloadable as a PDF file.

This section builds on our study of Unit 3.1: Trigonometric Fourier Series.

Trigonometric Fourier series uses integration of a periodic signal multiplied by sines and cosines at the fundamental and harmonic frequencies. If performed by hand, this can a painstaking process. Even with the simplifications made possible by exploiting waveform
to exploit the trigonometrc identities, and the properties of orthogonal functions before we can arrive at the simplified solutions. This is why I concentrated on the properties and left the computation to a computer.

However, by exploiting the exponential function $e^{a t}$, we can derive a method for calculating the coefficients of the harmonics that is much easier to calculate by hand and converted into an algorithm that can be executed by computer.

The result is called the Exponential Fourier Series.

Agenda

- Exponents and Euler's Equation
- The Exponential Fourier series
- Symmetry in Exponential Fourier Series
- Example

The Exponential Function $e^{a t}$

- You should already be familiar with $e^{a t}$ because it appears in the solution of differential equations.
- It is also a function that appears in the definition of the Laplace and Inverse Laplace Transform.
- It pops up again and again in tables and properies of the Laplace Transform.

Case when a is real.

When a is real the function $e^{a t}$ will take one of the two forms illustrated below:

```
clear all
```

```
%% The decaying exponential
t=linspace(-1,2,1000);
figure
plot(t,exp(t),t, exp(0.*t),t,exp(-t))
axis([-1,2,-1,8])
title('exp(at) -- a real')
```

legend('exp(t)', 'exp(0)', 'exp(-t)')
grid
hold off

You can regenerate this image generated with this Matlab script: expon.m.

- When $a<0$ the response is a decaying exponential (red line in plot)
- When $a=0 e^{a t}=1$ - essentially a model of DC
- When $a>0$ the response is an unbounded increasing exponential (blue line in plot)

Case when a is imaginary

This is the case that helps us to simplify the computation of sinusoidal Fourier series.

It was Leonhard Euler who discovered the formula visualized above.

Some important values of ωt

These are useful when simplifying expressions that result from integrating functions that involve the imaginary exponential

Give the following:

- $e^{j \omega t}$ when $\omega t=0$
- $e^{j \omega t}$ when $\omega t=\pi / 2$
- $e^{j \omega t}$ when $\omega t=\pi$
- $e^{j \omega t}$ when $\omega t=3 \pi / 2$
- $e^{j \omega t}$ when $\omega t=2 \pi$

Case where a is complex

We shall not say much about this case except to note that the Laplace transform equation includes such a number. The variable s in the Laplace Transform

$$
\int_{0}^{\infty} f(t) e^{-s t} d t
$$

is a complex exponential.

The consequences of a complex s have particular significance in the development of system stability theories and in control systems analysis and design. Look out for them in EG-243.

Two Other Important Properties

By use of trig. identities, it is relatively straight forward to show that:

$$
\cos \omega t=\frac{e^{j \omega t}+e^{-j \omega t}}{2}
$$

and

$$
\sin \omega t=\frac{e^{j \omega t}-e^{-j \omega t}}{j 2}
$$

We can use this result to convert the Trigonometric Fourier Series into an Exponential Fourier Series which has only one integral term to solve per harmonic.

The Exponential Fourier Series

As as stated in the notes on the Trigonometric Fourier Series any periodic waveform $f(t)$ can be represented as

$$
\begin{aligned}
f(t)= & \frac{1}{2} a_{0}+a_{1} \cos \Omega_{0} t+a_{2} \cos 2 \Omega_{0} t+\cdots \\
& +b_{1} \sin \Omega_{0} t+b_{2} \sin 2 \Omega_{0} t+\cdots
\end{aligned}
$$

If we replace the cos and sin terms with their imaginary exponential equivalents:

$$
\begin{aligned}
f(t)= & \frac{1}{2} a_{0}+a_{1}\left(\frac{e^{j \Omega_{0} t}+e^{-j \Omega_{0} t}}{2}\right)+a_{2}\left(\frac{e^{j 2 \Omega_{0} t}+e^{-j 2 \Omega_{0} t}}{2}\right)+\cdots \\
& +b_{1}\left(\frac{e^{j \Omega_{0} t}-e^{-j \Omega_{0} t}}{j 2}\right)+b_{2}\left(\frac{e^{j 2 \Omega_{0} t}-e^{-j 2 \Omega_{0} t}}{j 2}\right)+\cdots
\end{aligned}
$$

Grouping terms with same exponents

$f(t)=\cdots+\left(\frac{a_{2}}{2}-\frac{b_{2}}{j 2}\right) e^{-j 2 \Omega_{0} t}+\left(\frac{a_{1}}{2}-\frac{b_{1}}{j 2}\right) e^{-j \Omega_{0} t}+\frac{1}{2} a_{0}+\left(\frac{a_{1}}{2}+\frac{b_{1}}{j 2}\right) e^{j \Omega_{0} t}$

New coefficients

The terms in parentheses are usually denoted as

$$
\begin{gathered}
C_{-k}=\frac{1}{2}\left(a_{k}-\frac{b_{k}}{j}\right)=\frac{1}{2}\left(a_{k}+j b_{k}\right) \\
C_{k}=\frac{1}{2}\left(a_{k}+\frac{b_{k}}{j}\right)=\frac{1}{2}\left(a_{k}-j b_{k}\right) \\
C_{0}=\frac{1}{2} a_{0}
\end{gathered}
$$

The Fxnonential Fourier Series is

$$
f(t)=\cdots+C_{-2} e^{-j 2 \Omega_{0} t}+C_{-1} e^{-j \Omega_{0} t}+C_{0}+C_{1} e^{j \Omega_{0} t}+C_{2} e^{j 2 S_{0} t}+\cdots
$$

or more compactly

$$
f(t)=\sum_{k=-n}^{n} C_{k} e^{j k \Omega_{0} t}
$$

Important

The C_{k} coefficents, except for C_{0} are complex and appear in conjugate pairs so

$$
C_{-k}=C_{k}^{*}
$$

Evaluation of the complex coefficients

The coefficients are obtained from the following expressions*:

$$
C_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(\Omega_{0} t\right) e^{-j k\left(\Omega_{0} t\right)} d\left(\Omega_{0} t\right)
$$

or

$$
C_{k}=\frac{1}{T} \int_{0}^{T} f(t) e^{-j k \Omega_{0} t} d t
$$

These are much easier to derive and compute than the equivalent Trigonemetric Fourier Series coefficients ${ }^{[1]}$.

Trigonometric Fourier Series from Exponential Fourier Series

By substituting C_{-k} and C_{k} back into the original expansion

$$
C_{k}+C_{-k}=\frac{1}{2}\left(a_{k}-j b_{k}+a_{k}+j b_{k}\right)
$$

$$
a_{k}=C_{k}+C_{-k}
$$

Similarly

$$
C_{k}-C_{-k}=\frac{1}{2}\left(a_{k}-j b_{k}-a_{k}-j b_{k}\right)
$$

so

$$
b_{k}=j\left(C_{k}-C_{-k}\right)
$$

Thus we can easily go back to the trigonometric Fourier series if we need to.

Symmetry in exponential Fourier series

Since the coefficients of the exponential Fourier series are complex numbers, we can use symmetry to determine the form of the coefficients and thereby simplify the computation of series for wave forms that have symmetry.

Even Functions

For even functions, all the coefficients C_{k} are real.

Proof

Recall

$$
C_{-k}=\frac{1}{2}\left(a_{k}-\frac{b_{k}}{j}\right)=\frac{1}{2}\left(a_{k}+j b_{k}\right)
$$

and

$$
C_{k}=\frac{1}{2}\left(a_{k}+\frac{b_{k}}{j}\right)=\frac{1}{2}\left(a_{k}-j b_{k}\right)
$$

From knowledge of the trig. fourier series, even functions have no sine terms so the b_{k} coefficients are 0 . Therefore both C_{-k} and C_{k} are real.

Odd Functions

For odd functions, all coefficients C_{k} are imaginary.

By a similar argument, all odd functions have no cosine terms so the a_{k} coefficients are 0 . Therefore both C_{-k} and C_{k} are imaginary.

Half-wave symmetry

If there is half-wave symmetry, $C_{k}=0$ for k even.

Proof

From trigonometric Fourier series, if there is half-wave symmetry, all even harnonics are zero, thus both a_{k} and b_{k} are zero for k even. Hence C_{-k} and C_{k} are also zero when k is even.

No symmetry

If there is no symmetry the exponential Fourier series of $f(t)$ is complex.

Relation of C_{-k} to C_{k}

$C_{-k}=C_{k}^{*}$ always

Example 1

Compute the Exponential Fourier Series for the square wave shown below assuming that $\omega=1$

Will be solved by hand in Class

Some questions for you

- Square wave is an [odd/even/neither] function?
- DC component is [zero/non-zero]?
- Square wave [has/does not have] half-wave symmetry?

Hence

- $C_{0}=[?]$
- Coefficients C_{k} are [real/imaginary/complex]?
- Subscripts k are [odd only/even only/both odd and even]?
- What is the integral that needs to be solved for C_{k} ?

Solution to example 1

The integral is

$$
C_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(\Omega_{0} t\right) e^{-j k\left(\Omega_{0} t\right)} d\left(\Omega_{0} t\right)=\frac{1}{2 \pi}\left[\int_{0}^{\pi} A e^{-j k\left(\Omega_{0} t\right)} d\left(\Omega_{0} t\right)+\int_{\pi}^{2 \pi}(-A) e^{-j l}\right.
$$

For simplicity let $\theta=\Omega_{0} t$.

$$
\begin{gathered}
\frac{1}{2 \pi}\left[\int_{0}^{\pi} A e^{-j k \theta} d \theta+\int_{\pi}^{2 \pi}(-A) e^{-j k \theta} d \theta\right]=\frac{1}{2 \pi}\left[\left.\frac{A}{-j k} e^{-j k \theta}\right|_{0} ^{\pi}+\left.\frac{-A}{-j k} e^{-j k \theta}\right|_{\pi} ^{2 \pi}\right] \\
=\frac{1}{2 \pi}\left[\frac{A}{-j k}\left(e^{-j k \pi}-1\right)+\frac{A}{j k}\left(e^{-j 2 k \pi}-e^{-j k \pi}\right)\right]=\frac{A}{2 j \pi k}\left(1-e^{-j k \pi}+e^{-j 2 k \pi}-e^{-j}\right. \\
\frac{A}{2 j \pi k}\left(e^{-j 2 k \pi}-2 e^{-j k \pi}-1\right)=\frac{A}{2 j \pi k}\left(e^{-j k \pi}-1\right)^{2}
\end{gathered}
$$

For n odd ${ }^{[2]}, e^{-j k \pi}=-1$. Therefore

$$
\begin{gathered}
C_{k}=\frac{A}{k=\text { odd }}\left(e^{-j k \pi}-1\right)^{2}=\frac{A}{2 j \pi k}(-1-1)^{2}=\frac{A}{2 j \pi k}(-2)^{2}=\frac{2 A}{j \pi k} \\
C_{k}=0 . \\
k=\text { even }
\end{gathered}
$$

Exponential Fourier series for the square wave with odd symmetry

From the definition of the exponential Fourier series

$$
f(t)=\cdots+C_{-2} e^{-j 2 \Omega_{0} t}+C_{-1} e^{-j \Omega_{0} t}+C_{0}+C_{1} e^{j \Omega_{0} t}+C_{2} e^{j 2 \Omega_{0} t}+\cdots
$$

the exponential Fourier series for the square wave with odd symmetry is
$f(t)=\frac{2 A}{j \pi}\left(\cdots-\frac{1}{3} e^{-j 3 \Omega_{0} t}-e^{-j \Omega_{0} t}+e^{j \Omega_{0} t}+\frac{1}{3} e^{j 3 \Omega_{0} t}+\cdots\right)=\frac{2 A}{j \pi} \sum_{k=\text { odd }} \frac{1}{k} e^{j k \Omega_{0 i}}$
Note the sign change in first two terms. This is due to the fact that $C_{-k}=C_{k}^{*}$.

Skip to main content

Trig. Fourier series from exponential Fourier series

Since

$$
f(t)=\frac{2 A}{j \pi}\left(\cdots-\frac{1}{3} e^{-j 3 \Omega_{0} t}-e^{-j \Omega_{0} t}+e^{j \Omega_{0} t}+\frac{1}{3} e^{j 3 \Omega_{0} t}+\cdots\right)
$$

gathering terms at each harmonic frequency gives

$$
\begin{aligned}
f(t) & =\frac{4 A}{\pi}\left(\cdots+\left(\frac{e^{j \Omega_{0} t}-e^{-j \Omega_{0} t}}{2 j}\right)+\frac{1}{3}\left(\frac{e^{j 3 \Omega_{0} t}-e^{-j 3 \Omega_{0} t}}{2 j}\right)+\cdots\right) \\
& =\frac{4 A}{\pi}\left(\sin \Omega_{0} t+\frac{1}{3} \sin 3 \Omega_{0} t+\cdots\right) \\
& =\frac{4 A}{\pi} \sum_{k=\text { odd }} \frac{1}{k} \sin k \Omega_{0} t
\end{aligned}
$$

Computing coefficients of Exponential Fourier Series in MATLAB

Example 2

Verify the result of Example 1 using MATLAB.

Solution to example 2

Solution: See efs_sqw.m.

EFS_SQW

Calculates the Exponential Fourier for a Square Wave with Odd Symmetry.

```
cd ../matlab
```

format compact

Set up parameters

```
syms t A;
tau = 1;
T0 = 2*pi; % w = 2*pi*f -> t = 2*pi/omega
k_vec = [-5:5];
```

Define $\mathrm{f}(\mathrm{t})$

IMPORTANT: the signal definition must cover [0 to T0]

```
xt = A*(heaviside(t)-heaviside(t-T0/2)) - A*(heaviside(t-T0/2)-heaviside(t-
```


Compute EFS

```
[X, w] = FourierSeries(xt, T0, k_vec)
```

X =
[(A*2i)/(5*pi), 0, (A*2i)/(3*pi), 0, (A*2i)/pi, 0, -(A*2i)/pi, 0, -(A*2i)/(ミ

```
w =
    -5
```

Plot the numerical results from MATLAB calculation.

Convert symbolic to numeric result

```
Xw = subs(X,A,1);
```

Plot

```
subplot(211)
```

stem(w.abs(Xw). 'o-'):

```
ylabel('|c_k|');
subplot(212)
stem(w,angle(Xw), 'o-');
xlabel('Hamonic frequencies: k\Omega_0 (rad/sec)');
ylabel('\angle c_k [radians]');
```


Summary

- Exponents and Euler's Equation
- The exponential Fourier series
- Symmetry in Exponential Fourier Series
- Example

Answers to in-class problems

Some important values of ωt - Solution

- When $\omega t=0: e^{j \omega t}=e^{j 0}=1$
- When $\omega t=\pi / 2: e^{j \omega t}=e^{j \pi / 2}=j$
- M/hon ..,t $-\pi$. oj ${ }^{j \omega t}-\circ^{j \pi}-{ }_{-1}$
- When $\omega t=2 \pi: e^{j \omega t}=e^{j 2 \pi}=e^{j 0}=1$

It is also worth being aware that $n \omega t$, when n is an integer, produces rotations that map back to the simpler cases given above. For example see $e^{j 2 \pi}$ above.

Some answers for you

- Square wave is an odd function!
- DC component is zero!
- Square wave has half-wave symmetry!

Hence

- $C_{0}=0$
- Coefficients C_{k} are imaginary!
- Subscripts k are odd only!
- What is the integral that needs to be solved for C_{k} ?
$C_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(\Omega_{0} t\right) e^{-j k\left(\Omega_{0} t\right)} d\left(\Omega_{0} t\right)=\frac{1}{2 \pi}\left[\int_{0}^{\pi} A e^{-j k\left(\Omega_{0} t\right)} d\left(\Omega_{0} t\right)+\int_{\pi}^{2 \pi}(-A) e^{-j l}\right.$
[1] The analysis that leads to this result is provided between pages 7-31 and 7-32 of the text book [Karris, 2012]. It is not a difficult proof, but we are more interested in the result.
[2] You may wish to verify that $C_{0}=0$ and
Next
< Unit 3.1: Trigonometric Fourier Series

