
25/04/2023, 07:42Worksheet 19 — EG-247 Signals and Systems

Page 1 of 13file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/dft/2/worksheet19.html

Worksheet 19

Contents
To accompany Chapter 7.2 The Fast Fourier Transform

Agenda

The inefficiency of the DFT

The Fast Fourier Transform (FFT)

Efficiency of the FFT

In Class Demonstrations

Summary

To accompany Chapter 7.2 The Fast Fourier
Transform
We will step through this worksheet in class.

You are expected to have at least watched the video presentation of Chapter 7.2 of

the notes before coming to class.

If you haven’t watch it afterwards!

Agenda
The inefficiency of the DFT

The FFT - a sketch of its development

An illustration of part of the FFT algorithm

FFT v DFT

Two examples

The inefficiency of the DFT
Consider a signal whose highest frequency is 18 kHz, the sampling frequency is 50

kHz, and 1024 samples are taken, i.e., .

The time required to compute the entire DFT would be:

N = 1024

https://cpjobling.github.io/eg-247-textbook/dft/2/fft
https://cpjobling.github.io/eg-247-textbook/

25/04/2023, 07:42Worksheet 19 — EG-247 Signals and Systems

Page 2 of 13file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/dft/2/worksheet19.html

To compute the number of operations required to complete this task, let us expand

the N-point DFT defined as:

Then

It is worth remembering that

Since is a complex number, the computation of any frequency

component requires complex multiplications and complex

additions

 complex arithmetic operations are required to compute any frequency

component of

If we assume that is real, then only of the components are

unique.

Therefore we would require complex operations to

compute the entire frequency spectrum.

For our example, the -point DFT, would require

 complex operations

These would have to be completed in 20.48 ms.

This may be possible with modern computing hardware, perhaps even in a

mobile phone, but it seems impractical.

Fortunately, many of the terms in the computation are unity ().

Moreover, because the points are equally spaced points on the unit

circle;

And because is a power of 2, the points on the upper-half plane (range

 are the mirror image of the points on the lower-half plane range

;

t = 1024 samples
50 × 103 samples per second

= 20.48 ms

X[m] =
N−1

∑
n=0

x[n]W mn
N

X[0] = x[0]W 0
N + x[1]W 0

N + x[1]W 0
N + ⋯ + x[N − 1]W 0

N

X[1] = x[0]W 0
N + x[1]W 1

N + x[1]W 2
N + ⋯ + x[N − 1]W N−1

N

X[2] = x[0]W 0
N + x[1]W 2

N + x[1]W 4
N + ⋯ + x[N − 1]W 2(N−1)

N

⋯

X[N − 1] = x[0]W 0
N + x[1]W N−1

N + x[1]W 2(N−1)
N + ⋯ + x[N − 1]W (N−1)2

N

W 0
N = exp (−j

2π

N
(0)) = 1.

W i
N

X[k] N N

2N

X[k].1

x[n] N/2 X[m]

2N × N/2 = N 2

2

N = 1024
10242 = 1, 048, 576

WN = ±1

W i
N

N

0 < θ < π

π < θ < 2π

25/04/2023, 07:42Worksheet 19 — EG-247 Signals and Systems

Page 3 of 13file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/dft/2/worksheet19.html

Thus, there is a great deal of symmetry in the computation that can be

exploited to simplify the computation and reduce the number of operations

considerably to a much more manageable operations .

This is possible with the algorithm called the FTT (fast Fourier transform) that was

originally developed by James Cooley and John Tukey and has been considerably

refined since.

The Fast Fourier Transform (FFT)
The FFT is very well documented, including in Karris, so we will only sketch its

development and present its main result. However, we will illustrate part of the

algorithm to make concrete an idea of the efficiency advantage that the FFT has

over the DFT that we have already seen.

Much of the development follows from the properties of the rotating vector.

which results in some simplifications and mathematical short-cuts when is a

power of 2.

The most useful properties are:

Decomposition-in-Time FFT Algorithm

This development follows (Philips, et al., 2015). It is called the decomposition-in-
time (DIT), radix-2, FFT.

It allows us to visualize the FFT as a block diagram (for simulation) or a signal flow

graph (for ease of drawing).

N log2 N 3

4

WN = exp (− j2π

N
)

N

W N
N = exp (−j

2π

N
N) = exp (−j2π) = 1.

W
N/2
N = exp (−j

2π

N

N

2
) = exp (−jπ) = −1.

W
N/4
N = exp (−j

2π

N

N

4
) = exp (−jπ/2) = −j.

W 3N/4
N = exp (−j

2π

N

3N

4
) = exp (−j3π/2) = j.

W kN
N = exp (−j

2π

N
kN) = exp (−j2π) = 1, k = 0, 1, 2, …

W kN+r
N = exp (−j

2π

N
kN) exp (−j

2π

N
r) = 1.W r

N = W r
N .

W k
2N = exp (−j

2π

2N
k) = exp (−j

2π

N

k

2
) = W

k/2
N .

https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/James_Cooley
https://en.wikipedia.org/wiki/John_Tukey

25/04/2023, 07:42Worksheet 19 — EG-247 Signals and Systems

Page 4 of 13file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/dft/2/worksheet19.html

We start from a 2-point FFT (), and work up to an 8-point FFT ()

before generalizing the result.

We have implemented each algorithm in Simulink so we are able illustrate these

structures with executable examples as we go.

2-Point DFT

Because and , we write

In general for the 2-point DFT, we have

An equivalent Simulink model in block diagram form is:

N = 2 N = 8

X[k] =
1

∑
n=0

x[n]W nk
2 = x[0]W 0k

2 + X[1]W 1k
2 , k = 0, 1.

W 0k
2 = exp (j0) = 1 W 1k

2 = exp (−jπk) = (−1)k

X[0] = x[0] + x[1];
X[1] = x[0] − x[1].

X[k] = x[0] + (−1)kx[1].

25/04/2023, 07:42Worksheet 19 — EG-247 Signals and Systems

Page 5 of 13file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/dft/2/worksheet19.html

Let’s See it in MATLAB

two_point_dft.slx

4-point DFT

The 4-point DFT is given by

As a result of the periodicity of the weighting factor, we can simplify this

expression:

Using these results, we write

To clarify the next step, we define two new variables

cd matlab
clear all
format compact
%imatlab_export_fig('print-svg') % Static svg figures.

open two_point_dft

X[k] =
3∑

n=0

x[n]W nk
4

= x[0]W 0k
4 + x[1]W 1k

4 + x[2]W 2k
4 + x[3]W 3k

4 .

W nk
N = exp (−j(2π/N)nk);

W 0k
4 = 1;

W 1k
4 = exp (−j(π/2)k) = (−j)k;

W 2k
4 = exp (−jπk) = (−1)k;

W 3k
4 = W 2k

4 W 1k
4 = (−1)kW 1k

4 .

X[k] = x[0] + x[1]W 1k
4 + x[2](−1)k + x[3](−1)kW 1k

4 ,
X[k] = [x[0] + x[2](−1)k] + [x[1] + x[3](−1)k]W 1k

4 .

https://cpjobling.github.io/eg-247-textbook/dft/2/matlab/two_point_dft.slx

25/04/2023, 07:42Worksheet 19 — EG-247 Signals and Systems

Page 6 of 13file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/dft/2/worksheet19.html

Then,

The factors in brackets in this equation can be recognized as 2-point DFTs:

Note that and are periodic; for example,

and

The 4-point DFT then is

We see that the 4-point DFT can be computed by the generation of two 2-point

DFTs, followed by a recomposition of terms as shown in the signal flow graph

below:

In other words,

[4-point DFT of] = [2-point DFT of] + [2-point DFT of].

In Class Example 1

Use four-point DIT FFT to confirm that the DFT of the sequence

xe[n] = x[2n], n = 0, 1;
xo[n] = x[2n + 1], n = 0, 1.

X[k] = [xe[0] + xe[1](−1)k] + [xo[0] + xo[1](−1)k]W 1k
4 .

Xe[m] = xe[0] + xe[1](−1)m, m = 0, 1;
Xo[m] = xo[0] + xo[1](−1)m, m = 0, 1.

Xe[k] Xo[k]

Xe[2] = xe[0] + xe[1](−1)2 = Xe[0]

Xo[3] = xo[0] + xo[1](−1)3 = Xo[1]

X[0] = Xe[0] + Xo[0]W 1(0)
4 = Xe[0] + Xo[0];

X[1] = Xe[1] + Xo[1]W 1(1)
4 = Xe[0] + Xo[0]W 1

4 ;

X[2] = Xe[0] − Xo[0]W 1(2)
4 = Xe[0] + Xo[0];

X[3] = Xe[1] − Xo[1]W 1(3)
4 = Xe[0] + Xo[0]W 1

4 .

x[n] xe[n] W 1k
4 xo[n]

25/04/2023, 07:42Worksheet 19 — EG-247 Signals and Systems

Page 7 of 13file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/dft/2/worksheet19.html

is

SIMULINK Model of 4-Point DFT

four_point_dft.slx

8-point DFT

After some manipulation, not reproduced here, it can be shown that the 8-point

DFT is the recombination of two, 4-point DFTs that operate on the even and odd

numbered values in the sequence respectively.

Signal flow graph of 8-point DFT

x[n] = [1, 2, 3, 4]

X[m] = [10, −2 + j2, −4, −2 − j2].

open four_point_dft

X[k] =
7∑

n=0

x[n]W nk
8 .

x[n]

https://cpjobling.github.io/eg-247-textbook/dft/2/matlab/four_point_dft.slx

25/04/2023, 07:42Worksheet 19 — EG-247 Signals and Systems

Page 8 of 13file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/dft/2/worksheet19.html

SIMULINK Model of 8-Point DFT

eight_point_dft.slx

N-Point, radix-2 DIT FFT

In general, the -point, radix-2 DIT FFT is computed as the recomposition of two

-point FFTs) as shown in the buterfly diagram below

Decomposition-in-Frequency FFT

Another approach to forming the FFT is the so-called decomposition in frequency

(DIF) FFT.

We will not cover it’s development in detail (see Karris and Phillips et al.) if you

want to follow it through.

open eight_point_dft

N

(N/2)

https://cpjobling.github.io/eg-247-textbook/dft/2/matlab/eight_point_dft.slx

25/04/2023, 07:42Worksheet 19 — EG-247 Signals and Systems

Page 9 of 13file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/dft/2/worksheet19.html

We instead illustrate the final result for the four-point DIF FFT.

Signal flow graph for 4-point DIF FFT

Note that the structure is a 4-point decompostion followed by two 2-point FFTs.

Also note that it is frequency that is the input to the DFT stage.

SIMULINK Model of 4-Point DIF FFT

four_point_dif.slx

In Class Example 2

Use four two-point DIF FFT to confirm that the DFT of the sequence

is

Xn[k]

open four_point_dif

x[n] = [1, 2, 3, 4]

X[m] = [10, −2 + j2, −4, −2 − j2].

https://cpjobling.github.io/eg-247-textbook/dft/2/matlab/four_point_dif.slx

25/04/2023, 07:42Worksheet 19 — EG-247 Signals and Systems

Page 10 of 13file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/dft/2/worksheet19.html

Efficiency of the FFT
Wether we implement it as a Decomposition-in-Time (DIT) or a Decomposition-in-

Frequency (DIF), the FFT ends up having approximately

multiplications and a similar number of complex additions or subtractions.

In other words, complex arithmetic operations.

As complex arithmetic, particularly multiplication, is very expensive, this is a great

saving over the DFT which has of order operations.

DFT and FFT Comparisons

Under the assumptions about the relative efficiency of the DFT and FFT we can

create a table like that shown below:

(N/2) log2(N)

(N) log2(N)

N 2

25/04/2023, 07:42Worksheet 19 — EG-247 Signals and Systems

Page 11 of 13file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/dft/2/worksheet19.html

 DFT FFT FFT/DFT

N %

8 3 64 24 37.5

16 4 256 64 25

32 5 1,024 160 15.6

64 6 4,096 384 9.4

128 7 16,384 896 5.5

256 8 65,536 2,048 3.1

512 9 261,144 4,608 1.8

1024 10 1,048,576 10,240 1

2048 11 4,194,304 22,528 0.5

As you can see, the efficiency of the FFT actual gets better as the number of

samples go up!

However, there are other costs, such as the data storage needed for intermediate

steps, that need to be taken into account as well. For example, an 8-point FFT

requires only a 3 stage decomposition, with each stage needing storage for 8

complex numbers. That is 24 in all. Whereas a 2048 sequence will require 11

stages, storing 2048 values each. That is a total of 22,528 complex values .

In Class Demonstrations

FFT in MATLAB

The FFT algorithm is implemented, in MATLAB, as the function fft. We will

conclude the class by working through Exercises 6 and 7 from section 10.8 of

Karris.

Example 3

Plot the Fourier transform of the rectangular pulse shown below, using the

MATLAB fft func-tion. Then, use the ifft function to verify that the inverse

transformation produces the rectangular pulse.

log2 N N 2 N log2 N

6

25/04/2023, 07:42Worksheet 19 — EG-247 Signals and Systems

Page 12 of 13file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/dft/2/worksheet19.html

FFT for Example 3

The rectangular pulse can be produced like so

and the FFT is produced as

unwind

The inverse FFT is obtained with

Example 4

FFT Example 4

x = [linspace(-2,-1,50) linspace(-1,1,100) linspace(1,2,50)];
y = [linspace(0,0,50) linspace(1,1,100) linspace(0,0,50)];
stem(x,y)

stem(x, abs(fft(y)))

stem(x, abs(fftshift(fft(y))))

stem(x, ifft(fft(y)))

25/04/2023, 07:42Worksheet 19 — EG-247 Signals and Systems

Page 13 of 13file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/dft/2/worksheet19.html

The triangular pulse is obtained with

and the FFT is obtained with

The inverse FFT is obtained with

Summary
The inefficiency of the DFT

The FFT - a sketch of its development

An illustration of part of the FFT algorithm

FFT v DFT

Two examples

x = linspace(-1,1,100);
y = [linspace(0,1,50) linspace(1,0,50)];
stem(x,y)

stem(x, abs(fftshift(fft(y))))

stem(x, ifft(fft(y)))

By Dr Chris P. Jobling

© Copyright Swansea University (2019-2022).

This page was created by Dr Chris P. Jobling for Swansea University .

https://www.swansea.ac.uk/staff/engineering/c.p.jobling/
https://www.swansea.ac.uk/

