Worksheet 11

Contents

- To accompany Unit 5.4: Models of Discrete-Time Systems
- Colophon
- Agenda
- Discrete Time Systems
- Modelling DT systems in MATLAB and Simulink
- Converting Continuous Time Systems to Discrete Time Systems
- Example: Digital Butterworth Filter

To accompany Unit 5.4: Models of DiscreteTime Systems

Colophon

This worksheet can be downloaded as a PDF file. We will step through this worksheet in class.

An annotatable copy of the notes for this presentation will be distributed before the second class meeting as Worksheet 17 in the Week 9: Classroom Activities section of the Canvas site. I will also distribute a copy to your personal Worksheets section of the OneNote Class Notebook so that you can add your own notes using OneNote.

You are expected to have at least watched the video presentation of Models of DiscreteTime Systems of the notes before coming to class. If you haven't watch it afterwards!

After class, the lecture recording and the annotated version of the worksheets will be made available through Canvas.

Agenda

- Discrete Time Systems (Notes)
- Transfer Functions in the Z-Domain (Notes)
- Modelling digital systems in MATLAB/Simulink
- Converting Continuous Time Systems to Discrete Time Systems
- Example: Digital Butterworth Filter

Discrete Time Systems

In the lecture that introduced the z-transform we talked about the representation of a discrete-time (DT) system by the model shown below:

In this session, we want to explore the contents of the central block.

Example 5

Karris Example 9.10:

The difference equation describing the input-output relationship of a DT system with zero initial conditions, is:

$$
y[n]-0.5 y[n-1]+0.125 y[n-2]=x[n]+x[n-1]
$$

Compute:
2. The DT impulse response $h[n]$
3. The response $y[n]$ when the input $x[n]$ is the DT unit step $u_{0}[n]$

5.1. The transfer function

$$
H(z)=\frac{Y(z)}{U(z)}=\ldots ?
$$

5.2. The DT impulse response

Start with:

$$
\frac{H(z)}{z}=\frac{z+1}{z^{2}-0.5 z+0.125}
$$

MATLAB Solution

```
clear all
cd matlab
pwd
format compact
```

See dtm_ex1_2.mlx. (Also available as dtm_ex1_2.m.)

The difference equation describing the input-output relationship of the DT system with zero initial conditions, is:

$$
y[n]-0.5 y[n-1]+0.125 y[n-2]=x[n]+x[n-1]
$$

Transfer function

Numerator $z^{2}+z$

```
Nz = [1 1 0];
```

Denominator $z^{2}-0.5 z+0.125$

```
Dz = [1 -0.5 0.125];
```

Poles and residues

```
[r,p,k] = residue(Nz,Dz)
```

```
Hz = tf(Nz,Dz,-1)
hn = impulse(Hz, 15);
```


Plot the response

```
stem([0:15], hn)
grid
title('Example 5 - Part 2')
xlabel('n')
ylabel('Impulse response h[n]')
```

Response as stepwise continuous $\mathrm{y}(\mathrm{t})$

```
impulse(Hz,15)
grid
title('Example 5 - Part 2 - As Analogue Signal')
xlabel('nTs [s]')
ylabel('Impulse response h(t)')
```


5.3. The DT step response

$$
\begin{gathered}
Y(z)=H(z) X(z) \\
u_{0}[n] \Leftrightarrow \frac{z}{z-1} \\
Y(z)=H(z) U_{0}(z)=\frac{z^{2}+z}{z^{2}+0.5 z+0.125} \cdot \frac{z}{z-1} \\
=\frac{z\left(z^{2}+z\right)}{\left(z^{2}+0.5 z+0.125\right)(z-1)} \\
\frac{Y(z)}{z}=\frac{z^{2}+z}{\left(z^{2}+0.5 z+0.125\right)(z-1)}
\end{gathered}
$$

Solved by inverse Z-transform.

MATLAB Solution

See dtm_ex1_3.mlx. (Also available as dtm_ex1_3.m.)
open dtm_ex1_3

Results

Modelling DT systems in MATLAB and Simulink

We will consider some examples in class

MATLAB

Code extracted from dtm_ex1_3.m:

```
Ts = 1;
z = tf('z', Ts);
```

```
Hz = (z^2 + z)/(z^2 - 0.5 * z + 0.125)
```

```
step(Hz)
grid
title('Example 1 - Part 3 - As Analogue Signal')
xlabel('nTs [s]')
ylabel('Step response y(t)')
axis([0,15,0,3.5])
```


Simulink Model

See dtm.slx:

[^0]
Results

MATLAB c2d function

Let's see what the help function says:

```
help c2d
```


Example: Digital Butterworth Filter

- Design a 2nd-order butterworth low-pass anti-aliasing filter with transfer function $H(s)$ for use in sampling music.
- The cut-off frequency $\omega_{c}=20 \mathrm{kHz}$ and the filter should have an attenuation of at least -80 dB in the stop band.
- Choose a suitable sampling frequency for the audio signal and give the transfer function $H(z)$ and an algorithm to implement $h[n]$

Solution

See digi_butter.mlx.

First determine the cut-off frequency ω_{c}

$$
\omega_{c}=2 \pi f_{c}=2 \times \pi \times 20 \times 10^{3} \mathrm{rad} / \mathrm{s}
$$

```
wc = 2*pi*20e3
```

$$
\omega_{c}=125.66 \times 10^{3} \mathrm{rad} / \mathrm{s}
$$

From the lecture on filters, we know the 2nd-order butterworth filter has transfer function:

$$
H(s)=\frac{Y(s)}{U(s)}=\frac{\omega_{c}^{2}}{s^{2}+\omega_{c} \sqrt{2} s+\omega_{c}^{2}}
$$

Substituting for $\omega_{c}=125.6637 \times 10^{3}$ this is \ldots ?

```
Hs = tf(wc^2,[1 wc*sqrt(2), wc^2])
```

$$
H(s)=\frac{15.79 \times 10^{9}}{s^{2}+177.7 \times 10^{3} s+15.79 \times 10^{9}}
$$

Bode plot

MATLAB:

```
bode(Hs,{1e4,1e8})
grid
```


Sampling Frequency

From the bode diagram, the frequency roll-off is $-40 \mathrm{~dB} /$ decade for frequencies $\omega \gg \omega_{c}$. So, $|H(j \omega)|=-80 \mathrm{~dB}$ is approximately 2 decades above ω_{c}.

```
w_stop = 100*wc
```

To avoid aliasing, we should choose a sampling frequency twice this $=$?
$\omega_{s}=2 \times 12.6 \times 10^{6} \mathrm{rad} / \mathrm{s}$.

```
ws = 2 * w_stop
```

So
$\omega_{s}=25.133 \times 10^{6} \mathrm{rad} / \mathrm{s}$.
Sampling frequency $\left(f_{s}\right)$ in $\mathrm{Hz}=$?

$$
f_{s}=\omega_{s} /(2 \pi) \mathrm{Mhz}
$$

```
fs = ws/(2*pi)
```

$$
f_{s}=40.11 \mathrm{Mhz}
$$

Sampling time $T_{s}=$?
$T_{s}=1 / f s \mathrm{~s}$

```
Ts = 1/fs
```

$$
T_{s}=1 / f_{s}=0.25 \mu \mathrm{~s}
$$

Digital Butterworth

zero-order-hold equivalent

```
Hz = c2d(Hs, Ts)
```


Step response

```
step(Hz)
```


Algorithm

From previous result:

$$
H(z)=\frac{Y(z)}{U(z)}=\frac{486.2 \times 10^{-6} z+479.1 \times 10^{-6}}{z^{2}-1.956 z+0.9665}
$$

Dividing top and bottom by z^{2}...

$$
H(z)=\frac{Y(z)}{U(z)}=\frac{486.2 \times 10^{-6} z^{-1}+479.1 \times 10^{-6} z^{-2}}{1-1.956 z^{-1}+0.9665 z^{-2}}
$$

expanding out ...

$$
\begin{aligned}
& Y(z)-1.956 z^{-1} Y(z)+0.9665 z^{-2} Y(z)= \\
& \quad 486.2 \times 10^{-6} z^{-1} U(z)+479.1 \times 10^{-6} z^{-2} U(z)
\end{aligned}
$$

$$
\begin{aligned}
& y[n]-1.956 y[n-1]+0.9665 y[n-2]= \\
& \quad 486.2 \times 10^{-6} u[n-1]+479.1 \times 10^{-6} u[n-2]
\end{aligned}
$$

in algorithmic form (compute $y[n]$ from past values of u and y) ...

$$
\begin{aligned}
& y[n]=1.956 y[n-1]-0.9665 y[n-2]+486.2 \times 10^{-6} u[n-1]+\ldots \\
& \quad 479.1 \times 10^{-6} u[n-2]
\end{aligned}
$$

Block Diagram of the digital BW filter

As Simulink Model

digifilter.slx

```
open digifilter
```


Convert to code

To implement:
$y[n]=1.956 y[n-1]-0.9665 y[n-2]+486.2 \times 10^{-6} u[n-1]+479.1 \times 10^{-6} u[n$

```
/* Initialize */
Ts = 0.25e-06; /* more probably some fraction of clock speed */
ynm1 = 0; ynm2 = 0; unm1 = 0; unm2 = 0;
while (true) {
        un = read_adc;
        yn = 1.956*ynm1 - 0.9665*ynm2 + 479.1e-6*unm1 + 476.5e-6*unm2;
        write_dac(yn);
        /* store past values */
        ynm2 = ynm1; ynm1 = yn;
        unm2 = unm1; unm1 = un;
        wait(Ts);
}
```


[^0]: dtm

