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The preparatory reading for this section is Chapter 7.10 of [Karris, 2012].

This section concludes our introduction to Fourier Series.

In Unit 3.3: Computing Line Spectra we saw that we could represent continuous-time

periodic waveforms as line spectra in the frequency domain.

In this section we discuss how we can use these line spectra for the calculation of power

for signals with harmonics, computation of total harmanic distortion and we conclude with

an introduction to filters.

Colophon
An annotatable worksheet for this presentation is available as Worksheet 5.

The source code for this page is fourier_series/4/exp_fs3.md.

You can view the notes for this presentation as a webpage (Unit 3.4: Applications of

Line Spectra).

This page is downloadable as a PDF file.Skip to main content
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Power in Periodic Signals
In Unit 2.2 of EG-150 Signals and Systems we defined Signal Energy, Average Signal Power

and Root Mean Square Power which for periodic signals will be defined as shown below:

()

()

()

Parseval’s Theorem

Parseval’s Theorem states that the total average power of a periodic signal  is equal to

the sum of the average powers of all its harmonic components.

The power in the th harmonic  is given by

()

Since , the total power of the th harmomic is .

You should note that  so .
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Parseval’s theorem states that

()

RMS Power

By a similar argument:

()

Power Spectrum
The power spectrum of signal is the sequence of average powers in each complex

harmonic:

For real periodic signals the power spectrum is a real even sequence as

Total Harmonic Distortion
Suppose that a signal that is supposed to be a pure sine wave of amplitude A is distorted as

shown in fse:thd1  below

A sinusoid with harmomic distortion

A sinusoid with harmomic distortion

P =
1

T
∫

T

0
|x(t)|2

dt =
∞

∑
k=−∞

|Ck|2.

PRMS = √ 1

T
∫

T

0
|f(t)|2

dt =
∞

∑
k=−∞

|Ck|2.

⎷|Ck|2.

|C−k|2 = |C ∗
k |2 = |Ck|2.

Skip to main content

file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/_build/jupyter_execute/fourier_series/4/_build/jupyter_execute/fourier_series/4/pictures/thd.png
file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/_build/jupyter_execute/fourier_series/4/_build/jupyter_execute/fourier_series/4/pictures/thd.png


This can occur in the line voltages of an industrial plant that makes heavy use of nonlineear

loads such as electric arc furnaces, solid state relays, motor drives, etc (E.g. Tata Steel!)

THD Defined

Clearly, some of the harmonics for  are nonzero. One way to characterize the

distortion is to compute the ratio of average power in all the harmonics that “should not be

present”, that is for , to the total average power of the distorted sine wave. The

square-root of this ratio is called the total harmonic distortion (THD) of the signal.

If the signal is real and based on a sine wave (that is odd), then  and

()

and we can define the THD as the ratio of the RMS value for all the harmonics for 

(the distortion) to the RMS of the fundamental which is

()

()

Computation of THD

Computation of THD from the signal power spectrum

Computation of THD from the signal power spectrum
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Steady-State Response of a Continuous-Time
LTI System to a Periodic Signal
As shown in eigenfunctions_of_continuous_time_LTI_systems, the response of a

continuous-time LTI system with impulse response  to a complex exponential signal 

is the same complex exponential multiplied by a complex gain: , where:

()

In particular, for , the output is simply .

The complex functions  and  are called the system’s transfer function and

frequency response, respectively.

By superposition

The output of a continuous-time LTI system to a periodic function with period 

represented by a Fourier series is given by:

()

where  is the fundamental frequency.

Thus  is a Fourier series itself with coefficients :

()

Illustration

This picture below shows the effect of an LTI system on a periodic input in the frequency

domain.
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Application to signal processing

A consequence of the previous result is that we can design a system that has a desirable

frequency spectrum  that retains certain frequencies and cuts off others.

Filter attenuation

The effect of an LTI system on a periodic input signal is to modify its Fourier series through

a multiplication by its frequency response evaluated at the harmonic frequencies.

So what does  looks like.

[change this to an RC circuit filter]

As an example, consider the simple first-order Butterworth low-pass (LP) filter with cut-off

frequency :

For this filter

Let us say that we wish to compute the attenuation and phase of this filter at .

To compute the magnitude: $ $

We note that is  so the filter will attenuate the incoming harmonic frequency.

This will be true for all harmonics, so in general, for a LP filter:
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The phase will be given by $

$

Phases are additive so $ $

By doing such analysis, we can examine the effect of a filter on a periodic signal, just by

considering how the coefficients of the harmonic terms are changed (attenuated in

magnitude and shifted in phase) by the filter.

Examples
The recurrent rectangular pulse is used extensively in digital communication systems. To

determine how faithfully such pulses will be transmitted, it is necessary to know the power

in the frequency components.

Example 6: Average Power

Compute the average power of a pulse train for which the pulse width is  (duty cycle

50%). Use the result:

as your starting point.
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Example 7: Power Spectrum

Compute and display the power spectrum for the signal of ex19.1.

Power spectrum

Plot

Note that most of the power is concentrated at DC and in the first seven harmonic

components. That is in the frequency range  rad/s.

Example 8: THD in a square-wave

Given that the exponential fourier series coefficients for a square wave are

clear all
cd ../matlab
format compact

A = 1; w = 8; [f,omega] = pulse_fs(A,w,15);

ps = abs(f).^2;
fprintf('Omega (rad/s)\tPower (W)\n')
for i = 1:length(ps)
    fprintf('%d\t\t%f\n',omega(i),ps(i))
end

stem(omega,abs(f).^2)
title('Power Spectrum for pulse width T/8')
ylabel('|C_k|^2')
xlabel('\Omega_0 [rad/s]')

[−14π/T , +14π/T ]

C0 = 0
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compute the total harmonic distortion represented by the first 7 harmonics of the square-

wave.

Example 9: THD in a triangle wave

Given that the exponential fourier series coefficients for a triangle wave with even

symmetry is

compute the total harmonic distortion represented by the first 7 harmonics of the triangle-

wave.

Example 10: Low-pass filter

This example represents the low-pass filter used in the signal generator project for EG-

152: Analogue Design.

Use MATLAB to complete this example.

a) A triangle waveform  with frequency  is shown in Fig. 11.

A triangle waveform

A triangle waveform

Ck = 0 k even

Ck =
2A

jkπ
k odd

C0 = 0

Ck = 0 k even

Ck = −
4A

jk2π2
k odd

x(t) Ω0 = 2π/T

Note
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Determine the exponential Fourier series coefficients  for this waveform and use this

result to show that the trigonomentric Fourier series for a triangle waveform is

()

which, for the first seven harmonic frequencies, is given as

b) In the signal generator, the block diagram for which is given in fig19_5a_bd , a triangle

wavefom with  and frequency  kHz, is filtered by the low-pass filter

with transfer function

where  and  is the time constant of an RC circuit with  kΩ and

 nF.

A signal generator

A signal generator

i) Determine the frequency response  of the filter.

ii) Compute the cut-off frequency  of the filter. Note the value of the cut-off frequency

this is the frequency for which the filter transmits half-the power or

iii) Use equation () and the result of a) to determine the attenuation in the first 7 harmonics

of the triangle waveform.

iv) The filter is intended to generate a sinewave from the triangle wave. Determine the value

of the recovery gain  to ensure that the attenuation is 0 dB at 2.5 kHz. Recompute the

harmonic attenuation given the presence of .

Ck

x(t) =
8A

π2
(∑

k odd

(−1)(
k−1

2 ) 1

k2
sin kΩ0t)

x(t) ≈
8A

π2
(sin Ω0t −

1

9
sin 3Ω0t +

1

25
sin 5Ω0t −

1

49
sin 7Ω0t⋯)

A = 10 f = 1/T = 2.5

H(s) =
a2

s2 + 3as + a2

a = 1/(RC) RC R = 8.2

C = 10

H(jω)

ωc

|H(jωc)| =
1

√2

K

K
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v) Use these results to determine the THD (in dB) of the filtered waveform.

vi) Use the attached Simulink model (ex19_5.slx) of the the filter to validate the results.

Comment on the quality of the design.

Summary
We concluded our study of Fourier series by reviewing the following topics

Power in Periodic Signals

Power Spectrum

Total Harmonic Distortion

Steady-State Response of a Continuous-Time LTI System to a Periodic Signal

Examples

Unit 3.4 Takeaways

Parseval’s theorem allows us to compute the average power of of periodic signal

 from its eponential Fourier series coefficients. The average Paower

in a signale  is given by Eq. () and RMS power is given by Eq. ().

The power spectrum of signal is the sequence of average powers in each complex

harmonic:  which for real periodic signals is a real even sequence.

Total harmonic distortion is a measure of how much a periodic signal is different from a

sine wave. It is defined in Eq. ().

The steady-state frequency response of a continuous-time LTI system with impulse

response  to a periodic signal  with exponential Fourier series

components  is a Fourier series  with coefficients . (Where

 is the Laplace transform of ). This result can be used to determine the

filtering affect of any continuous-time LTI system on any periodic signal. As an example

cd ../matlab
% For Simulink model
R = 8.2e3; % 8.2 kOhm
C = 10e-9; % 10 nF
a = (1/(R*C)); % filter coefficient
K = 1 % replace wthis value with the value computed in Ex 19.5(b)(iv)
Hs = tf(a^2,[1 3*a a^2])
bode(Hs),grid
ex19_5

x(t) = x(t + nT )

x(t)

|Ck|2.

h(t) x(t) = xTt + nT )

Ck y(t) Dk = CkH(jkΩ0)

H(s) h(t)
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of this you should review the theory for the harmonic filter studied in Session 4 of EG-

152 Analogue Design and which is reviewed in Example 10: Low-pass filter.

Coming next

We will continue our study of signals and system by introducing the Fourier Transform,

discrete-time signals and systems, discrete Fourier transform and filter design.

Answers to selected examples

Solution to Example 1

 so:

Write down an expression for  using Parseval’s Theorem

P

sinc  for  even ( ) so…?

P for k odd

 for  odd ( ) so…?
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A

2
.
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∞
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∞
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∞
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)∣ ∣ ∣ ∣sin(kπ/2) = 1 k k = 1, 3, 5, 7, …
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P after eliminating sine

Check P from x(t)
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+
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