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Scope and Background Reading

Getting Started with Simulink for Signal Processing

To provide some inspiration for the power of MATLAB and Simulink for the design of digital

filters, we have included the following video from the MathWorks.

Getting Started with Simulink for Signal ProcessingGetting Started with Simulink for Signal Processing

In Unit 7.1: Designing Analogue Filters we looked at the MATLAB tools that can be used to

design prototype analogue low-pass filters of various types, and introduced the MATLAB

tools that design the prototypes and map them to high-pass, band-pass and band-stop

filters. We also demostrated the tools needed to visualize the frequency response of such

filters.

[The] video shows you an example of designing a signal processing system using

Simulink®.

You start off with a blank Simulink model and design a signal processing algorithm to

predict whether it is going to be sunny or cloudy in order to optimize power

generated from a solar energy grid. The video walks you through analyzing sensor

signals, designing filters and finally generating code for hardware deployment.

By the end of the video, you will learn the basics of Simulink and how Model-Based

Design can be used to model, simulate, test and implement real-world signal

processing systems.
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A the end of this process, we will have a transfer function  that defines the poles and

zeros of an analogue filter which we now need to digitize for implementation.

In this unit, we will introduce one way to convert and analogue filter  into a digital

filter  which is known as the bilinear transformation. We will give an example of a

digital filter design for a second-order analogue filter.

We will present the tools that MATLAB provides for the direct design of digital filters.

We will also look at the realization of such filters and give examples as Simulink block

diagrams.

Finally we will present the Digital Filter Design block which allows the design of a filter

directly in Simulink and supports the automatic generation of C-code or VHDL for digital

filter design.

This unit is based on Sections 11.4-11.6 of [Karris, 2012].

At the end of this unit you should be able to use the bilinear transform to convert a

2nd-order analogue proptotype into a digital filter and provide the coefficients for a

block-diagram or code implementation of such a filter.

To continue your learning we recommend that you visit the following pages on the

MATLAB Documentation Platform:

Signal Processing [in MATLAB]

Signal Processing Toolbox - signal analysis, analogue and digital filter design

DSP System Toolbox - for designing and implementing digital filters in Simulink and

for code generation.

Agenda
Digital filters

The Bilinear Transformation

MATLAB Functions for direct digital filter design

Digital Filter Design with Simulink

The Digital Filter Design Block

H(s)

H(s)

H(z)

format compact
cd matlab
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Digital filters
A digital filter is a computational process (algorithm) that converts one sequence of

numbers  representing the input, to another sequence  that represents the

output.

A digital filter can be used to filter out desired bands of frequency.

Digital filters can also be used to perform other functions, such as integration,

differentiation, and estimation.

The input-output difference equation that relates the output and input can be expressed in

the discrete-time (DT) domain as a summation of the form

(37)

or, as a Z-transform as

(38)

Therefore, the design of a digital filter to perform a desired function, entails the

determination of the coefficients  and .

Classification of digital filters

Digital filters are classified in terms of the duration of the impulse response, and in terms

of realization.

1. Impulse response duration

a). An infinite impulse response (IIR) filter as an infinite number of samples in its impulse

response .
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b). A finite impulse response (FIR) filter as a finite number of samples in its impulse

response .

2. Realization

a). In a recursive realization digital filter, the output depends on the input and the previous

values of the output. In a recursive digital filter, both the coefficients  and  are present.

b). In a non-recursive realization digital filter, the output depends on present and past

values of the input only. In a non-recursive digital filter, only the coefficients  are

present, i.e. .

Implementation of digital filters

Recursive realization

Fig. 14 shows a Simulink model of a third-order (3-delay element or 3-tap) recursive

realization of a digital filter[1]

Fig. 14 Recursive digital filter realization in Simulink

Download Simulink model  recursive.slx

h[n]

bi ai

bi

ai = 0

recursive
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Non-recursive realization

Fig. 15 shows a Simulink model of a third-order non-recursive realization of a digital

filter[2]

Fig. 15 Non-recursive digital filter realization in Simulink

Download Simulink model  nonrecursive.slx

Generally, IIR filters are implemented by a recursive realization, and FIR filters are

implemented by a non-recursive implementation.

Digital filter design methods

As demonstrated in Unit 7.1: Designing Analogue Filters, filter-design methods have been

established and analogue prototypes have been published. Thus, we can choose an

appropriate analogue prototype to satisfy the requirements.

Transformation methods are also available to transform analogue prototypes into an

equivalent digital filter.

Three commonly used transformation methods are

nonrecursive
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1. The impulse invariant method

Produces a digital filter  whose impulse response consists of the sampled values of

the impulse response of the equivalent analogue filter .

This is implemented in MATLAB by the system transformation function: Hz =

c2d(Hs,Ts,'impulse')  where Hs  is the analogue transfer function , Ts  is the

sampling period, and Hz  is the equivalent .

2. The step invariant method

Produces a digital filter  whose step response consists of the sampled values of the

step response of the equivalent analogue filter .

3. The bilinear transformation method

This uses the transformation[3]

(39)

to transform the left-half of the -plane into the interior of the unit circle in the -plane.

In this unit, we will discuss, and assess, only the use of the blinear transformation.

The Bilinear Transformation
We recall from Relationship Between the Laplace and Z-Transform that since ,

, then a DT transfer function  can be determined from a CT transfer

function  using the mapping:

(40)

But the relation  is a multi-valued transformation, and as such, cannot be

used to derive a rational polynomial in .

It can be approximated as
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(41)

Substitution of (41) into (40) yields

(42)

Digital frequency response of the bilinear
transformation

The digital frequency response (using  on the unit circle in the -plane) is obtained by

the substitution , giving

(43)

Since the  transformation maps the unit circle on the -plane into the  axis on the

-plane, the quantity

and  must be equal to some point  on the  axis.
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or

(44)

Frequency warping of the bilinear transformation

We see that the analogue frequency to digital frequency transformation results in a non-

linear mapping; this condition is know as warping.

For instance, the frequency range  the analogue frequency is warped into

the range  in digital frequency.

To express  in terms of , we rewrite (44) as

Then,

and for small ,

Therefore,

(45)

that is, for small frequencies,
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(46)

In MATLAB,  is a function of normalized frequency and thus the range of frequencies in

 is from . Then (45), when used with MATLAB, becomes

(47)

Pre-warping

The effect of warping can be eliminated by pre-warping the analogue filter prior to the

application of the bilinear transformation. This is acomplished with the use of (44).

Example 12

Compute the transfer function  of a low-pass filter with  dB cutoff frequency at 

Hz, and attenuation of at least  dB for frequencies greater than  Hz. The sampling

frequency  Hz. Compare the magnitude plot with that obtained by a low-pass

analogue filter with the same specifications.

Solution

We will apply the bilinear transformation. We arbitrarily choose a second-order

Butterworth filter which will meet the stop-band specification.

The transfer function  of the analogue low-pass filter with normalized frequency at

 rad/s is found with the MATLAB buttap  function as follows:

Thus, the transfer function with noramlized frequency, denoted as , is

ωd ≈ ωa

z

H(z) 0 → π

ωd ≈
ωaTs

π

H(z) 3 20

10 40

fs = 200

H(s)

ωc = 1

 [z,p,k] = buttap(2); [b,a] = zp2tf(z,p,k)

b =
     0     0     1

a =
    1.0000    1.4142    1.0000

Hn(s)Skip to main content



(49)

Now, we must transform this transfer function to another with actual cutoff frequency at

 Hz. We donote it as .

We will first pre-warp the analogue frequency which by relation (44), us related to the

digital frequency as

where

Denoting the analogue cutoff (3 dB) frequency as , we obtain

or

As expected from relation (46), this frequency is very close to the discrete-time frequency

 Hz, and thus from (49),

(49)

Relation (49) applies only when the cutoff frequency is normalized to  rad/s.

If , we must scale the transfer function in accordance with relation (33), that is,

Hn(s) =
1

s2 + 1.414s + 1

20 Ha(s)

ωa =
2

Ts

tan(
ωdTs

2
)

Ts =
1

fs
=

1

200
.

ωac

ωac = 400 tan(
2π × 20

2 × 200
) = 400 tan (0.1π) ≈ 130 rad/s
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≈ 20.69 Hz.

fdc = 20

Ha(s) ≈ Hn(s) =
1

s2 + 1.414s + 1

ωc = 1

ωc ≠ 1

H(s)actual = H (
s

ωactual
)
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For this example,  rad/s, and thus we replace  with  and we obtain

We will use MATLAB to simplify this expression

Then,

(50)

and making the substitution of  we

obtain

We use the MATLAB code below to simplify this expression

ωactual = 130 s s/130

Ha(s) =
1

(s/130)2 + 1.414s/130 + 1

syms s; simplifyFraction(1/((s/130)^2 + 1.414*s/130 + 1))
845000/50
9191/50

ans =

845000/(50*s^2 + 9191*s + 845000)

ans =
       16900

ans =
  183.8200

Ha(s) =
845000

50s2 + 9191s + 845000
=

16900

s2 + 183.82s + 16900

s = (2/Ts)(z − 1)/(z + 1) = 400(z − 1)/(z + 1)

H(z) =
16900

(400 ⋅ z−1
z+1

)2
+

183.82×400(z−1)

(z+1)
+ 16900

syms z; simplify(16900/((400*(z-1)/(z+1))^2 + 183.82*400*(z - 1)/(z + 1) + 1

ans = Skip to main content



and thus

(51)

We will used the MATLAB freqz  function to plot the magnitude of , but we must

first express it in negative powers of .

Dividing each term of (51) by , we obtain

(52)

The MATLAB script below will generate  and will plot the magnitude of this transfer

function.

(4225*(z + 1)^2)/(62607*z^2 - 71550*z + 25843)

expand(4225*(z + 1)^2)

ans =

4225*z^2 + 8450*z + 4225

H(z) =
4225z2 + 8450z + 4225

62607z2 − 71550z + 25843

H(z)

z

62607z2

0.0675 + 0.1350z−1 + 0.0675z−2

1 − 1.1428z−1 + 0.4128z−2

H(z)

az = [1,  -1.1428, 0.4128]; bz = [0.0675, 0.1350, 0.0675]; fs = 200; fc = 20
[Hz, wT] = freqz(bz,az,fc,fs);
semilogx(wT,20*log10(abs(Hz))); xlabel('Frequency in Hz - log scale')
ylabel('Magnitude (dB)'), title('Digital Low-Pass Filter. Example 12'),grid
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We now plot the analogue equivalent to compare the digital to the analogue frequency

response.

The MATLAB script below produces the desired plot.

[z,p,k] = buttap(2); [b, a] = zp2tf(z,p,k); f = 1:1:100; fc = 20; [bn,an] = 
Hs = freqs(bn,an,f);
semilogx(f, 20*log10(abs(Hs))), xlabel('Frequency in Hz - log scale')
ylabel('Magnitude (dB)'), title('Analogue Low-Pass Filter. Example 12'),grid
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Comparing the digital filter plot with the equivalent analogue filter plot, we observe that

the magnitude is greater than  dB for frequencies less than  rad/s, and is smaller

than  dB for frequencies greater than  Hz. Therefore, both the digital and analogue

low-pass filters meet the specified requirements.[4]

MATLAB bilinear function

An analogue filter transfer function can be mapped to a digital transfer function directly

with the MATLAB bilinear  function. The procedure is illustrated with the following

example.

Example 13

Use the MATLAB bilinear  function to derive the low-pass digital transfer function 

from a second-order Butterworth analogue filter with a  dB cutoff frequency at  Hz,

and sample rate  Hz.

Solution

We will use the following MATLAB script to produce the desired digital filter function:

−3 20

−10 40

H(z)

3 50

fs = 500
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Therefore, the transfer function  for this filter is

(53)

MATLAB Functions for direct digital filter
design
MATLAB provides us with a suite of functions that we need to design digital filters using

analogue prototypes. These are listed below.

N  = order of the filter

Wn  = normalized cutoff frequency

Rp  = pass band ripple

Rs  = stop band ripple

B  = , i.e. the numerator of the discrete transfer function 

A  = , i.e. the denominator of the discrete transfer function 

The MathWorks also provides a catalogue of filter design tools with examples in the Filter

Design Gallery.

For Low-Pass Filters

[z,p,k] = buttap(2); [num,den] = zp2tf(z,p,k); fc = 50; wc = 2*pi*fc;
[num1,den1] = lp2lp(num,den,wc);
fs = 500; [numd,dend] = bilinear(num1, den1, fs)

numd =
    0.0640    0.1279    0.0640

dend =
    1.0000   -1.1683    0.4241

H(z)

H(z) =
0.0640z2 + 0.1279z + 0.0640

z2 − 1.1683z + 0.4241
=

0.0640 + 0.1279z−1 + 0.0640z−2

1 − 1.1683z−1 + 0.4241z−2

B(z) H(z) = B(z)/A(z)

A(z) H(z)

[B,A] = butter(N,Wn)
[B,A] = cheb1(N,Rp,Wn)

Skip to main content

https://uk.mathworks.com/help/signal/ug/filter-design-gallery.html
https://uk.mathworks.com/help/signal/ug/filter-design-gallery.html


For High-Pass Filters

For Band-Pass Filters

For Band-Elimination Filters

Example 13

The transfer functions (53) through (56), describe different types of digital filters. Use the

MATLAB freqz  commmand to plot the magnitude versus radian frequency. What types

of filter does each transfer function represent? What classes of filter are they?

13(a)

(54)

[B,A] = cheb2(N,Rs,Wn)
[B,A] = ellip(N,Rp,Rs,Wn)

[B,A] = butter(N,Wn,'high')
[B,A] = cheb1(N,Rp,Wn,'high')
[B,A] = cheb2(N,Rs,Wn,'high')
[B,A] = ellip(N,rp,Rs,Wn,'high')

[B,A] = butter(N,[Wn1,Wn2])
[B,A] = cheb1(N,Rp,[Wn1,Wn2])
[B,A] = cheb2(N,Rs,[Wn1,Wn2])
[B,A] = ellip(N,Rp,Rs,[Wn1,Wn2])

[B,A] = butter(N,[Wn1,Wn2],'stop')
[B,A] = cheb1(N,Rp,[Wn1,Wn2],'stop')
[B,A] = cheb2(N,Rs,[Wn1,Wn2],'stop')
[B,A] = ellip(N,Rp,Rs,[Wn1,Wn2],'stop')

H1(z) =
(2.8982 + 8.6946z−1 + 8.6946z−2 + 2.8982z−3) ⋅ 10−3

1 − 2.3741z−1 + 1.9294z−2 − 0.5321z−3
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13(b)

(55)

13(c)

(56)

13(d)

(57)

Solution

The MATLAB script to plot each of the transfer functions of (53) through (56), is given

below where N = 512, i.e. the default value.

Now do the plots

H2(z) =
0.5276 − 1.5828z−1 + 1.5828z−2 − 0.5276z−3

1 − 1.7600z−1 + 1.1829z−2 − 0.2781z−3

H3(z) =
(6.8482 − 13.6964z−2 + 6.8482z−4) ⋅ 10−4

1 + 3.3033z−1 + 4.5244z−2 + 3.1390z−3 + 0.9603z−4

H4(z) =
0.9270 − 1.2079z−1 + 0.9270z−2

1 − 1.2079z−1 + 0.8541z−2

b1 = [2.8982, 8.6946, 8.6946, 2.8982]*10^(-3); a1 = [1, -2.3741, 1.9294, -0
[H1z,w1T] = freqz(b1, a1);

b2 = [0.5276, -1.5828, 1.5828, -0.5276]; a2 = [1, -1.7600, 1.1829, -0.2781];
[H2z,w2T] = freqz(b2, a2);

b3 = [6.8482, 0, -13.6964, 0, 6.8482]*10^(-4); a3 = [1, 3.2033, 4.5244, 3.13
[H3z,w3T] = freqz(b3, a3);

b4 = [0.9270, -1.2079, 0.9270]; a4 = [1, -1.2079, 0.8541];
[H4z,w4T] = freqz(b4, a4);
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It is clear that the filters are low-pass, high-pass, band-pass and band-stop. There is now

ripple in the pass-band or stop band so they are all Butterworth filters.

Digital Filter Design with Simulink
As stated earlier in this unit, a digital filter is a computational process, or algorithm, that

converts one sequence of numbers representing the input signal into another sequence of

numbers representing the output signal.

To close out this unit and the module, we will explore Simulink models that can be used to

implement digital filters, and present the Digital Filter Design block included in the

Simulink DSP System Toolbox, which can generate these models automatically.

clf; % clear the current figure
subplot(221), semilogx(w1T,abs(H1z)),axis([0.1 1 0 1]),title('Filter for H1
xlabel(''),ylabel('Magnitude'),grid
%
subplot(222), semilogx(w2T,abs(H2z)),axis([0.1 10 0 1]),title('Filter for H2
xlabel(''),ylabel('Magnitude'),grid
%
subplot(223), semilogx(w3T,abs(H3z)),axis([1 10 0 1]),title('Filter for H3(z
xlabel(''),ylabel('Magnitude'),grid
%
subplot(224), semilogx(w4T,abs(H4z)),axis([0.1 10 0 1]),title('Filter for H4
xlabel(''),ylabel('Magnitude'),grid
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The Direct Form I Realization of a Digital Filter

The Direct Form I Realization of a second-order digital filter is shown in Fig. 16.

Fig. 16 Direct Form I Realization of a second-order digital filter

Download this model as  dfir_df.

At the summing junction of Fig. 16 we obtain

And thus, the transfer function of the Direct Form I Realization of the second-order digital

filter of Fig. 16 is

(58)

A disadvantage of the Direct Form I Realization digital filter is that it requires  registers

where  represents the order of the filter. We observe that the second-order ( )

digital filter of Fig. 16 requires 4 delay (register) elements denoted as . However, this

dfir_df

b0X(z) + b1z
−1X(z) + b2z

−2X(z) + (−a1)z−1Y (z) + (−a1)z−2Y (z) = Y (z)

X(z) (b0 + b1z
−1 + b2z

−2) = Y (s) (1 + a1z
−1 + a2z

−2)

H(z) =
Y (z)

X(z)
=

b0 + b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2

2k

k k = 2

z−1
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form of realization has the advantage that there is no possibility of internal filter

overflow[5].

The Direct Form II Realization of a Digital Filter

The Direct Form II Realization[6] of a second-order digital filter is shown in Fig. 17. The

Simulink Transfer Fcn Direct Form II block implements the transfer function of this filter.

Fig. 17 Direct Form II Realization of a second-order digital filter

Download this model as  dfiir_df.slx.

The transfer function for the Direct Form-II second-order digital filter of Fig. 17 is the same

as for a Direct Form-I second-order filter of Fig. 16, that is,

(59)

A comparison of (58) and (59) shows that whereas a Direct Form-I second-order digital

filter requires  registers, where  represents the order of the filter, a Direct Type-II

second-order digital filter requires only  register elements denoted as . This is

because the register ( ) elements of the Direct Form-II realization are shared between

the zeros section and the poles section.

dfiir_df

H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2

2k k

k z−1

z−1
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Example 14

Fig. 18 shows a Direct Form-II second-order digital filter whose transfer function is

(60)

Fig. 18 Model for Example 14

Download this model as  ex14.slx.

The Series Form Realization of a Digital Filter

For the Series Form Realization, the transfer function is expressed as a product of first-

order and second-orer transefer functions as shown in (61) below.

(61)

Relation (61) is implemented as the cascaded blocks shown in Fig. 19.

H(z) =
1 + 1.5z−1 + 1.02z−2

1 − 0.25z−1 − 0.75z−2

ex14

H(z) = H1(z) ⋅ H2(z) ⋯HR(z)

Skip to main content

https://cpjobling.github.io/eg-247-textbook/_images/ex14.png
https://cpjobling.github.io/eg-247-textbook/_images/ex14.png
https://cpjobling.github.io/eg-247-textbook/_downloads/db9bd56d8213eea9cd080fd5f59d5da5/ex14.slx


Fig. 19 Series Form Realization

Fig. 20 shows the Series Form Realization of a second-order digital filter.

Fig. 20 Series Form Realization of a second-order digital filter

Download this model as  series_form_2nd.slx.

Example 15

The transfer function of the series form Realization of a certian second-order digital filter

is

To implement this filter, we factor the numerator and denominator polynomials as[7]

(62)

The Simulink model and the input and output waveforms are shown in Fig. 21.

series_form_2nd

H(z) =
0.5 (1 − 0.36z−2)

1 + 0.1z−1 − 0.72z−2

H(z) =
0.5 (1 + 0.6z−1) (1 − 0.6z−1)

(1 + 0.9z−1) (1 − 0.8z−1)
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Fig. 21 Model for Example 15

Download this model as  ex15.slx.

The Parallel Form Realization of a Digital Filter

The general form of the transfer function of a Parallel Form Realization is

(63)

Relation (63) is implemented as the parallel blocks shown in Fig. 22.

ex15

H(z) = K + H1(z) + H2(z) + ⋯ + HR(z)

Skip to main content

https://cpjobling.github.io/eg-247-textbook/_images/ex15.png
https://cpjobling.github.io/eg-247-textbook/_images/ex15.png
https://cpjobling.github.io/eg-247-textbook/_downloads/6d2704d81f86bd2fb2ed313c814a8803/ex15.slx
https://cpjobling.github.io/eg-247-textbook/_images/parallel.png
https://cpjobling.github.io/eg-247-textbook/_images/parallel.png


Fig. 22 Parallel Form Realization of a second-order digital filter

As with the Series Form Realization, the ordering of the individual filters in Fig. 22 is

immaterial. But because of the presence of the constant , we can simplify the transfer

function expression by performing the partial fraction expansion after we express the

transfer function in the form .

Example 16

The transfer function of a certain second-order digital filter is

Implement this filter using the Parallel Form Realization.

Next we perform partial fraction expansion

Therefore,

K

H(z)/z

H(z) =
0.5 (1 − 0.36z−2)

1 + 0.1z−1 − 0.72z−2

H(z)

z
=

0.5 (z + 0.6) (z − 0.6)

z (z + 0.9) (z − 0.8)

0.5 (z + 0.6) (z − 0.6)

z (z + 0.9) (z − 0.8)
=

r1

z
+

r2

z + 0.9
+

r2

z − 0.8

r1 =
0.5 (z + 0.6) (z − 0.6)

(z + 0.9) (z − 0.8) z=0

= 0.25∣r2 =
0.5 (z + 0.6) (z − 0.6)

z (z − 0.8) z=−0.9

= 0.147∣r3 =
0.5 (z + 0.6) (z − 0.6)

z (z + 0.9) z=0.8

= 0.103∣Skip to main content



(64)

The model and input and output waveforms are shown in Fig. 23.

Fig. 23 Model for Example 16

Download this model as  ex16.slx.

The Digital Filter Design Block
The Digital Filter Design block is included in the DSP System Toolbox and is included in

the version of MATLAB for which Swansea University has a site license. It also works on

MATLAB online. This block can be used to create models related to digital filter design

applications directly in Simulink.

H(z)

z
=

0.25

z
+

0.147

z + 0.9
+

0.103

z − 0.8

H(z) = 0.25 +
0.147z

z + 0.9
+

0.103z

z − 0.8

H(z) = 0.25 +
0.147

1 + 0.9z−1
+

0.103

1 − 0.8z−1

ex16
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The functionality of this block can be observed by dragging this block from the library into

a model and double clicking it.

When this is done, the Block Parameters dialogue box appears as shown in Fig. 24.

Fig. 24 The Digital Filter Design Block Parameters dialogue box

Download this model as  ex16.slx.

As indicated on the lower left part of this window, we can choose the Response Type

(Low-Pass, High-Pass, Band-Pass or Band-Stop), the Design Method (IIR or FIR) where

an IIR filter can be Butterworth, Chebyshev Type I, Chebyshev Type II, or Elliptic, and FIR

can be Window, Maximally Flat, etc., and the Window[8] can be Kaiser, Hamming etc. We

must click on the Design Filter. buttom at the bottom right of the Block Parameters

dialogue box to update the specifications.

dfd_block
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We will not give an actual example of the use of the Simulink filter design block in these

notes. Instead we refer you to Example 11.7 in [Karris, 2012] and also to the relevant page

Using Digital Filter Design Block in the MATLAB documentation site. There you will find

documentation of the Digital Filter Design Block and several examples of its use.

If you go on from this course to do some actual signal processing, we would urge you to

take full advantage of these resources.

Code generation

As well as the ability to design filters that can be immediately used in simulations of digital

signal processing applications, and the muliple analysis tools it provides in the the Digital

Filter Design Block, povided by the Signal Processing Toolbox and the DSP System

Toolbox, be used for code generation.

For example, it can generate Simulink models of the designed filter, as well as C header

files, and HDL code for VHDL and verilog devices.

Thus, MATLAB can be used in a so-called model-based design process as described in

the opening video

The End?
This concludes this module. Donʼt forget to let us know how it went for you in the end of

module feedback.

There are exercises in the notes which will give you practice in the sort of questions that

will come up in the exam.

Hopefully you found the module interesting and will make use of some of your knowledge

after the exams are over!

Exercises

Exercise 7.2.1

Exam Preparation
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Use the block diagram shown in Fig. 14 to validate (38) and (37).

Exam Preparation

Exercise 7.2.2

Use the block diagram shown in Fig. 17 to validate (55). Write down the equivalent

difference equation.

Exercise 7.2.3

Exam Preparation

Design a 2nd-order Butterworth filter with  kHz. Use the Bilinear transformation to

convert the analogue filter to a digital filter with sampling frequency of 44.1 kHz. Use pre-

warping to ensure that the cutoff frequency is correct at the equivalent digital frequency.

Exercise 7.2.4

Exam Preparation

A digital filter with cutoff frequency of 100 Hz for a signal sampled at 1 kHz has transfer

function

The frequency response for this filter (plotted against ) is shown in Fig. 25.

ωc = 20

H(z) =
0.6401 − 1.1518z−1 + 0.6401z−2

1 − 1.0130z−1 + 0.4190z−2

f/(fs/2)
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[1]

[2]

[3]

[4]

[5]

[6]

Fig. 25 Frequency response for Example 7.2.4

a) What type of filter is this?

b) Estimate the band-pass ripple, and stop-band ripple of the filter.

c) Implement the filter as Direct Form Type II digital filter and sketch its block diagram.

d) Use the example of Convert to code to give a code implementation of the filter.

e) If the input to this filter is a step function , calculate the first 5

outputs  of the filter.

References
See Bibliography.

Footnotes

Note that the block labelled  is a one unit delay ; the triangular

blocks are gains ; and the circular blocks are summing points. Following

the equations we have  and

. It is left as an exercise

for the reader to show that combining these two equations, taking Z-transforms, and

eliminating , results in the transfer function  given in (38)

and hence the difference equation of (37).

It is obvious from this figure that

.

 is the sampling period, that is the reciprocal of the sampling frequency  Hz.

Note the significant distortion of the digital filter response at high frequencies.

For a detailed discussion on overflow conditions please refer to Section 10.5, Chapter

10, Page 10-6 of [Karris, 2005].

The Direct Form-II is also known as the Canonical Form.

x[n] = {1, 1, 1, 1, …}

y[n]

z−1 y[n] = x[n − 1]

y[n] = kx[n]

w[n] = x[n] − a1w[n − 1] − a2w[n − 2] − a3w[n − 3]

y[n] = b0w[n] + b1w[n − 1] + b2w[n − 2] + b3w[n − 3]

W(z) H(z) = Y (z)/X(z)

y[n] = b0x[n] + b1x[n − 1] + b2x[n − 2] + b3x[n − 3]

Ts fs
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[7]

[8]

The way we combine the numerator and denominator factors is immaterial. For

example we could group the factors as  and

, or as  and

.

A window function multiplies the infinte length impulse response (IIR) by a finite width

function, referred to a a window function, so that the infinite length series will be

terminated after a finite number of terms in the series. This causes what is called

leakage and results in additional ripple in the frequency domain. Windows of various

shapes can be used to minimize this leakage for particular applications. The study of

windowing functions is beyond the scope of this course. In the CPD course Signal

Processing Toolbox you were shown the use of windowing functions as a design

method for approximating an ideal filter. EEE stidents will have experienced windowing

effecrs in the EGA223 lab on ADC, DAC and filters. You can study windowing in more

detail in Appendix E of [Karris, 2012].
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