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Scope and Background Reading
We introduced the idea of filters in Unit 4.4: Introduction to Filters and examined in some

detail the idea of an ideal low-pass filter and an approximation to the ideal filter known and

the Butterworth filter. We also showed how a high-pass filter, stop-band filter and and

pass-band filter could be implemented by simple manipulations of the frequency response

(or transfer functions) of a low-pass filter.
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An advantage of the Butterworth filter is that it has a flat response in the pass band, a

consistent attenuation of -3 dB at the cut-off frequency, and a steady roll-off in the stop

band. A disadvantage is that you need a high-order filter to get a fast transition between

the pass-band and the stop-band.

In Example: Digital Butterworth Filter, we showed how an analogue 2nd-order Butterworth

filter could be translated into a discrete-time (DT) system using the MATLAB function c2d ,

and we demonstrated the architecture and code that might be used to implement the

digital filter.

In this unit we will explore further some of the concepts of what is called filter design by

analogue prototype. This Unit is based on Chapter 11 of [Karris, 2012]. We will illustrate the

concepts using MATLAB and Simulink as appropriate on the understanding that you

should be able to recognize the filter type from a frequency response.
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Introduction

Low-pass analogue filter prototypes

Magnitude-square function

Butterworth Analogue Low-Pass Filter Design
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High-Pass, Band-Pass and Band-Elimination Filter Design

Introduction
Analogue filters are defined in continuous range of frequencies. They are classified as

low-pass, high-pass, band-pass and band-elimination (band-stop) filters.

The ideal magnitude characteristics of each are illustrated in Fig. 11
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Fig. 11 Magnitude characteristics of ideal filters (reproduced from Figure 11.1 [Karris,

2012]).

As we saw in Ideal Low-Pass Filter (LPF), filters with ideal characteristics are not physically

realizable (they are not causal systems). Instead we design practical filters that

approximate these characteristics.

A digital filter, in general, is a computational process, or algorithm, that converts one

sequence of numbers representing the input signal into another sequence of numbers

representing the output signal.

Analogue filter functions have been used extensively as prototype models for designing

digital filters, and that is the approach we will present here.

In Section 11.2 of Karris [2012] examples of analogue low-pass and high-pass

filters made from RC circuits and band-pass and stop band filters made from RLC

circuits are given. We will pass over these as our interest is in digital filters, and in

any case, filters made from passive components are only practical in a limited

range of applications. Instead, we will look at the idea of analogue filter porotypes.

Note
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Low-pass analogue filter prototypes
In this section, we will use the analogue low-pass filter as a basis. Using transformations,

we can derive high-pass and other types of filter from the low-pass filter.

We will discuss the Butterworth, Chebyshev Type I, Chebyshev Type II and Elliptic filters.

As through MATLAB and the Signal Processing Toolbox, we have access to sophisticated

design tools, we will gloss over some of the mathematical details. If you are interested in

such detail, please refer to Section 11.3 and following sections of [Karris, 2012].

From the point of view of assessment, you are only required to be able to

recognise the filter types presented here and their key properties. Although you

can design a filter of virtually any order, we will limit ourselves to second-order

filters and provide the actual transfer function coefficients that you need to be

able to convert the analogue filter into a digital filter using the bilinear transform. If

you need access to the filter formulae, you will be given them in the question.

Magnitude-square function

To facilitate the design of filters we use a so-called magnitude-squared function[1] ,

and from it derive a  function such that

(16)

Since , the square of a complex number can be expressed as that complex

number and its complex conjugate. Thus, if the magnitude is , then

(17)

Now,  can be considered as  evaluated at , and this (16) is justified.

Also, since  is understood to represent the magnitude, it does not need to be enclosed in

vertical lines.

Not all magnitude-square functions can be decomposed to  and  rational

functions; only even functions of , positive for all , and proper-rational functions[2] can

satisfy (16).

A2(ω)

G(s)

A2(ω) = G(s). G(−s)|s=jω

(jω)∗ = (−jω)

A

A2(ω) = |G(jω)| = G(jω)G∗(jω) = G(jω). G(−jω)

G(jω) G(s) s = jω

A

G(s) G(−s)

ω ω

Note
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Example 1

It is known that

Compute .

Solution

Since

it follows that

and

Therefore

General form of magnitude-square function

The general form of magnitude-square function  is

(18)

G(s) =
3s2 + 5s + 7

s2 + 4s + 6

A2(ω)

G(s) =
3s2 + 5s + 7

s2 + 4s + 6

G(−s) =
3s2 − 5s + 7

s2 − 4s + 6

G(s). G(−s) =
3s2 + 5s + 7

s2 + 4s + 6
.

3s2 − 5s + 7

s2 − 4s + 6
=

9s4 + 17s2 + 49

s4 − 4s2 + 36

A2(ω) =
9s4 + 17s2 + 49

s4 − 4ss + 36
s=jω

=
9ω4 − 17ω2 + 49

ω4 + 4ω2 + 36∣ A2(ω)

A2(ω) =
C (bkω2k + bk−1ω2k−2 + ⋯ + b0)

akω2k + ak−1ω2k−2 + ⋯ + a0
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where  is the DC gain,  and  are constant coefficients, and  is a positive integer

denoting the order of the filter.

Once the magnitude-square function  is known, we can derive  from (16) with

the substitution ,

that is

(19)

Analysis of magnitude-square filter

In the simplest low-pass filter, the DC gain of the magnitude-square function is unity. In this

case (18) reduces to

(20)

and at high frequencies (i.e. in the stop-band) can be approximated as

(21)

The attenuation rate of this approximation is  dB/decade.

Example 2

Given the magnitude-square function

(22)

derive a suitable transfer function .

Solution

From relation (19)

C a b k

A2(ω) G(s)

(jω)2 = −ω2 = −s2

G(s). G(−s) = A2(ω)
ω2=−s2∣A2(ω) =

b0

akω2k + ak−1ω2k−2 + ⋯ + a0

A2(ω) =
b0/ak

ω2k

20k

A2(ω) =
16 (−ω2 + 1)

(ω2 + 4) (ω2 + 9)

G(s)
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(23)

This function has zeros at , and poles at  and .

There is no restriction on the zeros, but for stability[3], we select the left-half -plane poles.

Let

(24)

We must find  such that . From (22)

or

From (24),

and for  we must have,

or

By subsitution into (24), we obtain

(25)

Butterworth Analogue Low-Pass Filter Design

Consider the Butterworth low-pass filter[4] whose magnitude-squared function is

G(s). G(−s) = A2(ω)
ω2=−s2 =

16 (s2 + 1)

(−s2 + 4) (−s2 + 9)∣s = ±j s = ±2 s = ±3

s

G(s) =
K (s2 + 1)

(s + 2) (s + 3)

K G(0) = A(0)

A2(0) = 16/36 = 4/9

A(0) = 2/3

G(0) = K/6

G(0) = A(0)

K/6 = 2/3

K = 12/3 = 4

G(s) =
4 (s2 + 1)

(s + 2) (s + 3)
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(26)

where  is a positive integer, and  is the cutoff (-3 dB) frequency.

We can use MATLAB to plot the frequency response of this relation for 

All Butterworth filters have the property that all poles of the transfer function that describes

them lie on the circumference of a circle with radius , and they are  radians apart.

Thus, if  is odd, the poles start at zero radians, and if  is even, they start at 

radians. But regardless wether  is odd or even, the poles are distributed with symmetry

with respect to the  axis. For stability, we chose the left half-plave poles to form .

We can find the nth roots of the complex number  by De Moirvre’s theorem. This states

that

A2(ω) =
1

(ω/ωc)
2k + 1

k ωc

k = 1, 2, 4, 8

w_w0 = 0:0.02:3; 
Aw2k1 = sqrt(1./(w_w0.^2 + 1)); Aw2k2 = sqrt(1./(w_w0.^4 + 1));
Aw2k4 = sqrt(1./(w_w0.^8 + 1)); Aw2k8 = sqrt(1./(w_w0.^16 + 1));
plot(w_w0,Aw2k1,w_w0,Aw2k2,w_w0,Aw2k4,w_w0,Aw2k8),grid on
xlabel('Normalized Frequency Ratio (ratio of actual to cut-off)')
ylabel('Magnitude A (square root of A^2(omega))')
title('Butterworh Analogue Low-Pass Filter characteristics for k = 1, 2, 4 an
legend('k=1','k=2','k=4','k=8')

ωc 2π/2k

k k 2π/2k

k

jω G(s)

s
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Example 3

Derive the transfer function  for the third-order ( ) Butterworth low-pass filter

with normalized cut-off frequency  rad/s.

Solution

With  and  rad/s, (26) simplifies to

(27)

With the substitution , (26) becomes

(28)

The poles of (28) are given by  or .

That is,  and, by De Moivre’s theorem, with ,

Thus

As expected, these six poles lie on the circumference of the circle with radius  as

shown in Fig. 12.

n√rejθ = n√rej( θ+2kπ
N

) k = 1, ±1, ±2, …

G(s) k = 3

ωc = 1

k = 3 ωc = 1

A2(ω) =
1

ω6 + 1

ω2 = −s2

G(s). G(−s) =
1

−s6 + 1

(1 − s6) = 0 s = 6√1

s = 6√1∠0∘ n = 6

6√1ej0 = 6√1ej( 0+2kπ
6 ), k = 0, 1, 2, 3, 4, 5

s1 = 1∠0∘ s2 = 1∠60∘ = 1
2 + j

√3
2 s3 = 1∠120∘ = − 1

2 + j
√3
2

s4 = 1∠180∘ = −1 s5 = 1∠240∘ = − 1
2 − j

√3
2 s6 = 1∠300∘ = 1

2 − j
√3
2

ωc = 1
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Fig. 12 Location of the poles for the transfer function for the transfer function of Example

3

The transfer function  is formed with the left half-plane poles ,  and . Then

(29)

We use MATLAB to express the denominator as a polynomial

Therefore (28) simplifies to

G(s) s3 s4 s5

G(s) =
K

(s + 1)(s + 1
2 − j

√3
2 )(s + 1

2 + j
√3
2 )

syms s; den = (s + 1)*(s + 1/2 - j*sqrt(3)/2)*(s + 1/2 + j*sqrt(3)/2)

den =

(s + 1)*(s - (3^(1/2)*1i)/2 + 1/2)*(s + (3^(1/2)*1i)/2 + 1/2)

expand(den)

ans =

s^3 + 2*s^2 + 2*s + 1

Skip to main content

https://cpjobling.github.io/eg-247-textbook/_images/butter6.png
https://cpjobling.github.io/eg-247-textbook/_images/butter6.png


(30)

The gain  is found from  and . Thus, K = 1 and

(33)

The generalized form of any analogue low-pass filter (Butterworth, Chebyshev, Elliptic, etc)

is

(34)

The pole locations and coefficients of the corresponding denominator polynomials have

been derived and tabulated and easily found on the internet: for example Normalized

Butterworth polynomials in Wikipedia.

For brevity, we will not reproduce these tables here.

Designing Butterworth filters in MATLAB

The MATLAB functions buttap  and zp2tf  can also be used to derive the coefficients.

The buttap  function returns the zeros, poles and gain for an Nth order normalized

prototyoe Butterworth low-pass filter. The resulting filter has  poles around the unit circle

in the left half plane, and no zeros. The zp2tf  function performs the zero-pole-gain to

transfer function conversion.

Example 4

Use MATLAB to derive the numerator b  and denominator a  coefficients for the third-

order Butterworth low-pass filter prototype with normalized cutoff frequency. Plot the Bode

plot of the filter.

Solution

G(s) =
K

s3 + 2s2 + 2s + 1

K A2(0) = 1 G(0) = K

G(s) =
1

s3 + 2s2 + 2s + 1

G(s)|lp =
b0

aksk + ⋯ a2s2 + a1s + a0

N

[z,p,k] = buttap(3); 
[b,a] = zp2tf(z,p,k)
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b =
         0         0         0    1.0000

a =
    1.0000    2.0000    2.0000    1.0000

G = tf(b,a)
bode(G), grid on
title('Bode diagram for a 3rd order Butterworth filter with wc = 1 rad/s')

G =

 

            1

  ---------------------

  s^3 + 2 s^2 + 2 s + 1

 

Continuous-time transfer function.
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Note that the roll-off is -60 dB/decade above the normalized cut-off  rad/s. Also

note that the phase changes fron  to  from low to high frequency.

Denormalizing a prototype filter

The examples given so far, and the MATLAB function buttap  (and the others we will meet

later) give the coefficents assuming that the cut-off frequency  is 1 rad/s. To denormalize

the filter coefficients, we need to change the radius of the circle shown e.g in Fig. 12 from

 to  .

To do this we make the subsitution

(33)

As you might expect, MATLAB provides a function for that: lp2lp .

Example 5

Redesign the filter designed in Example 4 so that it has a a cut-off frequency of  kHz.

Solution

ωc = 1

0∘ −270∘

ωc

ωc = 1 ωc = ωactual

G(s)actual = G(
s

ωactual
)

1
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Defining the stop-band attenuation in a Butterworth filter

Quite often, we require that in the stop-band of the filter, that is when , the

attenuation is larger than  dB/decade. That is, we require a sharper cut-off. As can be

[z,p,k] = buttap(3); 
[b,a] = zp2tf(z,p,k);
fc = 1e3; % 1 kHz
wc = 2*pi*fc; % rad/s
format long
[b, a] = lp2lp(b, a, wc)

b =
     2.480502134423985e+11

a =
   1.0e+11 *
  Columns 1 through 3
   0.000000000010000   0.000000125663706   0.000789568352087
  Column 4
   2.480502134423986

h = bodeplot(tf(b, a)); setoptions(h,'FreqUnits','kHz'),grid on
title('Butterworth 3rd Order Low-Pass Filter: fc = 1 kHz')

ω ≥ ωc
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seen from the plots of Butterworth Analogue Low-Pass Filter Design, the Butterworth

becomes sharper for larger values of . To see this more clearly, we generate a family of

attenuation curves using the MATLAB script given below:

This plot indicates that for  the attenuation is  dB/decade, for , the

attenuation is  dB/decade, and so on. In general, the attenuation is  dB/decade

for a Butterworth filter.

k

w_w0 = 1:0.01:10; dBk1 = 20.*log10(sqrt(1./(w_w0.^2 + 1)));
dBk2 = 20.*log10(sqrt(1./(w_w0.^4 + 1))); dBk3 = 20.*log10(sqrt(1./(w_w0.^6 +
dBk4 = 20.*log10(sqrt(1./(w_w0.^8 + 1))); dBk5 = 20.*log10(sqrt(1./(w_w0.^10 
dBk6 = 20.*log10(sqrt(1./(w_w0.^12 + 1))); dBk7 = 20.*log10(sqrt(1./(w_w0.^14
dBk8 = 20.*log10(sqrt(1./(w_w0.^16 + 1)));
semilogx(w_w0,dBk1,w_w0,dBk2,w_w0,dBk3,w_w0,dBk4,...
         w_w0,dBk5,w_w0,dBk6,w_w0,dBk7,w_w0,dBk8)
xlabel('Normalized Frequency (rad/sec)'),ylabel('Magnitude Response (dB)')
title('Magnitude Attenuation ad a Fuction of Noramized Frequency')
set(gca, 'XTick',[1:10]),grid
legend('k = 1','k = 2','k = 3','k = 4','k = 5','k = 6','k = 7','k = 8')

k = 1 −20 k = 2

−40 −20k
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We have used several new MATLAB commands in Example 5. These are

summarized below.

lp2lp  - change cutoff frequency for lowpass analogue filter.

bodeplot  - plot Bode frequency response with additional plot customization

options.

option FreqUnits  - changes the units for frequency response data.

Karris [2012] goes on to give more details of the Butterworth filter, including how to chose

the filter order  to match a specific requirement on the stop-band attenuation, and how

such a filter might be implemented with Op-Amp circuits. We leave you to explore these

topics on your own.

Chebyshev Type I Analogue Low-Pass Filter Design

An issue with the Butterworth filter is that the stop-band attenuation rate may not be high

enough for some applications unless a very large value of  is used.

If we allow some ripple in the pass-band we can obtain a sharper cut-off for smaller values

of .

The Chebyshev analogue low-pass filter is such a design.

The model transfer function for a Type I Chebyshev filter is

(34)

Where  is the Chebyshev polynomial[5] of degree , and  is a parameter that is used to

set the pass-band ripple.

A Chebyshev filter has the same transfer function structure as (34), but the poles are

located on an elipse rather than a circle.

We will not present the formulae used to define the poles of this filter type, as MATLAB

provides the design tool cheb1ap  that will do this for us.

N

N

N

A2(ω) =
α

1 + ϵ2C 2
k (ω/ωc)

Ck k ϵ2

Note
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Example 6

Use the MATLAB function cheb1ap  to design a second-order Chebysehv Type I low-pass

filter with 3 dB ripple in the pass-band.

Solution

The cheb1ap  function takes two arguments, the order  and the pass-band ripple (in dB).

It returns the zero-pole-gain values as vectors.

To solve the problem, we use the script:

Now, with the known values of a  and b , we can use the bode  function to produce the

magnitude and phase plots as follows.

N

w = 0:0.05:400; % Range of frequencies to plot.
[z,p,k] = cheb1ap(2, 3);
[b, a] = zp2tf(z, p, k) % Convert zeros and poles of G(s) to polynomial form

b =
                   0                   0   0.501188646503800

a =
   1.000000000000000   0.644899651302867   0.707947780125280

bode(b, a)
title('Bode plot for Type | Second-Order Chebyshev Low-Pass Filter')
grid on
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On the Bode plots shown, the ripple is not so obvious. The reason is that the Magnitude is

in dB so the plot is essentially a linear approximation. To see the ripple we plot magnitude:

w = 0:0.01:10; 
Gs = freqs(b, a, w); % returns response as complex values
semilogx(w,abs(Gs)),grid on
xlabel('Frequency in rad/s'),ylabel('Magnitude of G(s)')
title('Type I Chebyshev Low-Pass Filter')
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The function freqs  computes the complex frequency response  of an analogue

filter .

Chebyshev Type II Analogue Low-Pass Filter Design

A Type II Chebyshev filter has ripple in the stop-band. It is defined by the magnitude

squared expression:

(35)

We can design Chebyshev Type II low-pass filters with the MATLAB cheb2ap  function.

Example 7

Using the MATLAB cheb2ap  function, design a third-order Chebyshev analogue filter with

3 dB ripple in the stop band.

Solution

We begin with the MATLAB script reporoduced below.

H(jω)

H(s) = b(s)/a(s)

A2(ω) =
ϵ2C 2

k (ω/ωc)

1 + ϵ2C 2
k
(ω/ωc)

Skip to main content

https://uk.mathworks.com/help/signal/ref/freqs.html
https://uk.mathworks.com/help/signal/ref/cheb2ap.html


Plot this response

w = 0:0.01:1000; 
[z,p,k] = cheb2ap(3,3);
[b, a] = zp2tf(z,p,k)

b =
  Columns 1 through 3
                   0   3.007131879022801                   0
  Column 4
   4.009509172030401

a =
  Columns 1 through 3
   1.000000000000000   3.716637149027132   2.385274779846660
  Column 4
   4.009509172030401

Gs = freqs(b, a, w); semilogx(w,abs(Gs))
xlabel('Frequency in rad/s - log scale')
ylabel('Magnitude of G(s) (absolute values)')
title('Type 2 Chebyshev Low-Pass Filter: k = 3, 3 dB ripple in stop band')
grid
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Elliptic Analogue Low-Pass Filter Design

The elliptic filter, also known as Cauer filter, is characterized by the low-pass magnutude-

squared function

(36)

where  represents a rational elliptic function used with eliptic integrals.

Elliptic filters have ripple in both the pass-bad and stop-band, but have a very steep

transiition between these bands.

We can design elliptic low-pass filters with the ellip  function. The statement

returns the pole-zero-gain values for an elliptic low-pass filter of order N , with a maximum

passband ripple of Rp  dB, a stop-band ripple of Rs  dB, cut-off frequency of W0  rad/s.

The argument ‘s’ returns the poles and zeros of an analogue filter. If ommitted, the function

designs a discrete-time filter.

Example 8

Use the MATLAB function ellip  to design a fifth-order analogue eliptic low-pass filter

with  rad/s, pass-band ripple of  dB and stop-band ripple of  dB. Plot the

magnitude frequency response of the filter.

Solution

A2(ω) =
1

1 + R2
k (ω/ωc)

Rk(x)

[z,p,k] = ellip(N,Rp,Rs,W0,'s')

ωc = 200 0.6 20

w = 0:0.05:500;
[z,p,k] = ellip(5, 0.6, 20, 200, 's');
[b,a] = zp2tf(z,p,k);

Gs = freqs(b,a,w);
semilogx(w,abs(Gs)),grid on
xlabel('Frequency in rad/s - log scale'),ylabel('Magnitude of G(s) (absolute 
title('Five Pole Elliptic Low-Pass Filter ')
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Comparison of analogue low-pass filter designs

Figure Fig. 13 shows the Butterworth, Chebyshev and Elliptic filters for a fifth-order

prototype analogue low-pass filter.
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Butterworth Chebyshev type 1

Chebyshev type 2 Elliptic

Fig. 13 Frequency response curves of four linear analog filters: Butterworth filter,

Chebyshev filter of type 1 and 2 and Elliptic filter, each one as 5th order filter. (Originally

published as Filters_order5.svg on WikiPedia article Chebyshev filter. Image CC BY

Geek2)

As you can see, the Chebyshev filters are sharper than the Butterworth filter; they are not

as sharp as the elliptic one, but they show fewer ripples over the bandwidth.

Advantages and disadvantages of different types of
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filters

High-Pass, Band-Pass and Band-Elimination
Filter Design
Prototype analogue filters can be converted to high-pass, band-pass and band-elimination

(band-stop filters) by the application of frequency transformations on  in . These

transformations are listed in Table 11.5 on Page 11-40 of [Karris, 2012] and will not be

reproduced here. Instead we will introduce the MATLAB transformation functions and give

some examples of their use.

Low-pass to low-pass

As already seen in Denormalizing a prototype filter, the function lp2lp  will convert a

normalised low-pass analogue filter with cut-off frequency  to .

See Denormalizing a prototype filter for an example.

Low-pass to high-pass

The MATLAB function lp2hp  will convert a low-pass analogue filter to a high-pass

analogue filter.

Filter Type Advantages Disadvantages

Butterworth Simplest design; Flat

pass band

Slow rate of attenuation for order 4 or less

Chebyshev

Type I

Sharp cuttoff rate in

transition (pass to stop)

band

Ripple in pass band. Bad (non-linear) phase

response

Chebyshev

Type II

Sharp cuttoff rate in

transition (pass to stop)

band

Ripple in stop band. Bad (non-linear) phase

response

Elliptic

(Cauer)

Sharpest cutoff rate

among all other types of

filters

Ripple in both pass and stop band. Worst

(most non-linear) phase response among the

other types of filters.

s G(s)

ωc = 1 ωc = ωactual
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Example 9

Use the MATLAB commands cheb1ap  and lp2hp  to derive the transfer function of a 3-

pole Chebyshev Type I analogue high-pass filter with cutoff frequency  kHz.

Solution

We will use the cheb1ap  command to derive the transfer function  of the low-pass

filter with normalized cutoff frequency at  rad/s. Then we will use the command

lp2hp  to transform  to another transfer function  with cut-off frequency at

 kHz or  rad/s.

fc = 5

G(s)

ωc = 1

G(s) G′(s)

fc = 5 ωc = 2π × 5 × 103

% design 3 pole Type I Chebyshev low-pass filter, wc = 1 rad/s
[z,p,k] = cheb1ap(3,3);    % 3 pole, 3dB ripple in pass band
[b,a] = zp2tf(z,p,k);      % Compute numerator and denoninator coefficents w
f = 1000:100:100000;       % Define frequency range to plot
fc = 5000;                 % Define actual cutoff frequency at 5 kHz
wc = 2*pi*fc;              % Convert desired cut-off frequency to rad/s      
[bn,an] = lp2hp(b, a, wc); % Compute numerator and denoninator coefficents o

% Compute and plot frequency response of high-pass filter
Gsn = freqs(bn, an, 2*pi*f);
semilogx(f, 20*log10(abs(Gsn))), grid
xlabel('Frequency (Hz) - log scale'),ylabel('Magnitude of Transfer Function 
title('3-Pole Type 1 Chebyshev high-pass filter with fc = 5 kHz')

Skip to main content



Low-pass to band-pass

The MATLAB function lp2bp  will convert a normalized low-pass analogue filter to a band-

pass analogue filter.

Example 10

Use the MATLAB commands buttap  and lp2bp  to derive the transfer function of a 3-

pole Butterworth analogue band-pass filter with the pass band frequency centred at

 kHz, and bandwidth  kHz.

Solution

We will use the buttap  function to derive the transfer function  of the low-pass

analogue filter with normalized cutoff frequency at  rad/s. Then we will use the

command lp2bp  to transform  to another transfer function  with centred

frequency at  kHz and bandwith  hHz.

f0 = 4 BW = 2

G(s)

ωc = 1

G(s) G′(s)

f0 = 4 BW = 2

format short;
% design 3 pole Butterworth low-pass filter, wc = 1 rad/s
[z,p,k] = buttap(3);       % 3 pole
[b,a] = zp2tf(z,p,k);      % Compute numerator and denoninator coefficents w
f = 100:100:100000;        % Define frequency range to plot
f0 = 4000;                 % Define center frequency at 4 kHz
W0 = 2*pi*f0;              % Convert desired centre frequency to rad/s    
fbw = 2000;                % Define bandwidth
Bw = 2*pi*fbw;             % Convert desired bandwidth to rad/s
[bn,an] = lp2bp(b, a, W0, Bw); % Compute numerator and denoninator coefficent

% Compute and plot frequency response of band-pass filter
Gsn = freqs(bn, an, 2*pi*f);
semilogx(f, 20*log10(abs(Gsn))), grid
xlabel('Frequency (Hz) - log scale'),ylabel('Magnitude of Transfer Function 
title('3-Pole Butterworth band-pass filter with f0 = 4 kHz, BW = 2 kHz')
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Low-pass to band-stop

The MATLAB function lp2bs  will convert a low-pass normalized analogue filter to a band-

stop analogue filter.

Example 11

Use the MATLAB commands buttap  and lp2bs  to derive the transfer function of a 3-

pole Butterworth analogue band-elimination (band-stop) filter with the stop band

frequency centred at  kHz, and bandwidth  kHz.

Low-pass to band-pass

The MATLAB function lp2bp  will convert a low-pass filter to a band-pass filter.

Solution

We will use the buttap  function to derive the transfer function  of the low-pass

analogue filter with normalized cutoff frequency at  rad/s. Then we will use the

command lp2bs  to transform  to another transfer function  with centred

frequency at  kHz and bandwith  hHz.

f0 = 5 BW = 2

G(s)

ωc = 1

G(s) G′(s)

f0 = 5 BW = 2Skip to main content
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Unit 7.1 Summary
In this unit we have looked at the design of prototype analogue low-pass filters which is a

basis for filter design in general. We have demonstrated how the analogue-squared

function  can be used to design an analogue filter  with

particular properties, we then looked at the Butterworth filter, Chebyshev Type I and Type II

filters and the elliptic filter. We explored the MATLAB tools provided by the Signal

Processing Toolbox that can used to these design these prototype filters and the functions

format short;
% design 3 pole Butterworth low-pass filter, wc = 1 rad/s
[z,p,k] = buttap(3);       % 3 pole
[b,a] = zp2tf(z,p,k);      % Compute numerator and denoninator coefficents w
f = 1000:100:10000;        % Define frequency range to plot
f0 = 5000;                 % Define center frequency at 4 kHz
W0 = 2*pi*f0;              % Convert desired centre frequency to rad/s    
fbw = 2000;                % Define bandwidth
Bw = 2*pi*fbw;             % Convert desired bandwidth to rad/s
[bn,an] = lp2bs(b, a, W0, Bw); % Compute numerator and denoninator coefficent

% Compute and plot frequency response of band-pass filter
Gsn = freqs(bn, an, 2*pi*f);
semilogx(f, 20*log10(abs(Gsn))), grid
xlabel('Frequency (Hz) - log scale'),ylabel('Magnitude of Transfer Function 
title('3-Pole Butterworth band-stop filter with f0 = 5 kHz, BW = 2 kHz')

A2(ω) = G(s)G(−s) G(s)
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that can be used to denormalize the cutoff frequency and design high-pass, band-pass

and band-stop filters.

These are the topics we covered:

Introduction

Low-pass analogue filter prototypes

Magnitude-square function

Butterworth Analogue Low-Pass Filter Design

Chebyshev Type I Analogue Low-Pass Filter Design

Chebyshev Type II Analogue Low-Pass Filter Design

Elliptic Analogue Low-Pass Filter Design

Comparison of analogue low-pass filter designs

High-Pass, Band-Pass and Band-Elimination Filter Design

Unit 7.1 Takeaways

Coming Next

We will conclude this module in Unit 7.1: Designing Analogue Filters with a look at how

analogue prototype filters can be digitized, how the digitized filters can be implemented

and a demonstration of the interactive filter-design tools provided by MATLAB.

MATLAB functions introduced in Unit 7.1

Analogue prototype designers

Used to design an analogue prototype low-pass filter  with normalized cutoff

frequency  rad/s. The examples in this unit show the functions returning the zeros,

poles and gain of the equivalent transfer function . They can all return the numerator

and denominator polynomial coeffiecients of  directly.

buttap  - -pole Butterworth analogue prototype low-pass filter.

cheb1ap  - -pole Chebyshev Type I analogue prototype low-pass filter with defined

pass-band ripple.

G(s)

ωc = 1

G(s)

G(s) = b(s)/a(s)

N

N
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cheb2ap  - -pole Chebyshev Type II analogue prototype low-pass filter with defined

stop-band ripple.

ellipap  - -pole Elliptic analogue prototype low-pass filter with defined pass-band

and stop-band ripple.

Filter transformation functions

These functions convert the analogue low-pass filter  with normalized cutoff

frequency  \rad/s and convert it to a new filter .

lp2lp  - converts an analogue low-pass filter with  to one with .

lp2hp  - converts an analogue low-pass filter with  to a high-pass filter with

.

lp2bp  - converts an analogue low-pass filter with  to a band-pass filter with

defined centre frequency  and bandwidth .

lp2lp  - converts an analogue low-pass filter with  to a band-stop filter with

defined centre frequency  and bandwidth .

Utility functions

zp2tf  - return the numerator and denominator polynomial coeffiecients of

 from the zeros, poles and gain returned by the design functions.

fregs  - return the CT frequency response of an analogue filter

semilogx  - plot y against the log of x.

tf  - create an LTI system object

bode  - Bode ploto of an LTI system: magnitude in dB, phase in degrees plotted

against log frequency.

mag2db  - Converts magnitude into dB using .

References
See Bibliography.

Footnotes

N

N

G(s)

ωc = 1 G′(s)

ωc = 1 ωc = ωactual

ωc = 1

ωc = ωactual

ωc = 1

f0 BW

ωc = 1

f0 BW

G(s) = b(s)/a(s)

20 log10 M
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This avoids having to deal with complex magnitudes which use the square-root

operator.

A rational function is said to be proper if the largest power in the denominator is equal

to or larger than that of the numerator.

A system is said to be stable if a finite input produces a finite output. Alternatively, a

system is stable if its impulse response  vanishes after a sufficiently long time. For

linear time-invariant systems, a system will be stable only if all the real-parts of the

poles have negative sign. That is, they lie in the left-half of the -plane.

The frequency response of the Butterworth filter is maximally flat (has no ripples) in

the passband, and rolls off towards zero in the stopband. When viewed on a

logarithmic Bode plot, the response slopes off linearly at a rate of  dB/decade

towards negative infinity.

The derivation of the Chebyshev polynomials is outside the scope of this unit, but if

you are interested you can review one of the many online resources: e.g. Chebyshev

polynomials [WikiPedia]. The Chebyshev polynomials of the first kind are used in the

design of filters. If you want the details, please consult Section 11.2.2 of Karris [2012].

See also Chebyshev filter [WikiPedia]

Previous
Unit 7: Analogue and Digital
Filters

Next
Unit 7.2: Designing Digital

Filters in MATLAB and Simulink

h(t)

s

−20k

https://en.wikipedia.org/wiki/Chebyshev_polynomials
https://en.wikipedia.org/wiki/Chebyshev_polynomials
https://en.wikipedia.org/wiki/Chebyshev_polynomials#Examples
https://cpjobling.github.io/eg-247-textbook/zbib.html#id7
https://en.wikipedia.org/wiki/Chebyshev_filter
https://cpjobling.github.io/eg-247-textbook/filter_design/index.html
https://cpjobling.github.io/eg-247-textbook/filter_design/digital_filters.html

