- [Colophon](#page-0-0)
- The Unit Step [Function](#page-1-0)
- Simple Signal [Operations](#page-2-0)
- [Synthesis](#page-4-0) of Signals from the Unit Step
- The Ramp [Function](#page-5-0)
- The Dirac Delta [Function](#page-6-0)
- Important [properties](#page-8-0) of the delta function
- [Summary](#page-8-1)
- [References](#page-9-0)

The preparatory reading for this section is [Chapter](https://ebookcentral.proquest.com/lib/swansea-ebooks/reader.action?docID=3384197&ppg=75#ppg=17) 1 of [[Karris,](file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/zbib.html#id7) 2012] which

Unit 2: Elementary Signals

Contents

Consider the network shown in below where the switch is closed at time $t = T$ and all components are ideal.

Express the output voltage $V_{\rm out}$ as a function of the unit step function, and sketch the appropriate waveform.

- begins with a discussion of the elementary signals that may be applied to electrical circuits
- introduces the unit step, unit ramp and dirac delta functions
- presents the sampling and sifting properties of the delta function and
- concludes with examples of how other useful signals can be synthesised from these elementary signals.

Colophon

An annotatable worksheet for this presentation is available as **[Worksheet](file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/elementary_signals/worksheet3.html) 3**.

- The source code for this page is elementary signals/index.md.
- You can view the notes for this presentation as a webpage [\(HTML\)](https://cpjobling.github.io/eg-247-textbook/elementary_signals/index.html).
- This page is downloadable as a [PDF](https://cpjobling.github.io/eg-247-textbook/elementary_signals/elementary_signals.pdf) file.

Solution

Before the switch is closed at $t < T$:

$$
V_{\rm out}=0.
$$

After the switch is closed for $t > T$:

file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/elementary_signals/index.html 2/10

We imagine that the voltage jumps instantaneously from 0 to V_s volts at $t=T$ seconds as shown below.

We call this type of signal a step function.

The Unit Step Function

In Matlab

In Matlab, we use the heaviside function (named after Oliver [Heaviside](https://en.wikipedia.org/wiki/Oliver_Heaviside)).

syms t ezplot(heaviside(t),[-1,1]) heaviside(0)

$$
V_{\rm out}=V_s.
$$


```
%%file plot_heaviside.m 
syms t
fplot(heaviside(t),[-1,1]),ylim([-0.2,1.2])
grid
heaviside(0)
```
Created file '/Users/eechris/code/src/github.com/cpjobling/eg-247 textbook/elementary_signals/plot_heaviside.m'.

plot_heaviside

 $ans =$

0.5000

Note that, so that it can be plotted, Matlab defines the *heaviside function* slightly differently from the mathematically ideal unit step:

Simple Signal Operatio n s

Amplitude Scaling

Sketch $\overline{Au_0(t)}$ and $-\overline{Au_0(t)}$

 $fplot(-A*u0(t),[-1,1]), grid$, $ylim([-2,2,0.2])$, $title('Amplitude scaling and$ mirroring \$\$-Au_0(t)\$\$' ,'interpreter' ,'latex')

Note that the signal is scaled in the y directior

$$
\text{heaviside}(t) = \begin{cases} 0 & t < 0 \\ 1/2 & t = 0 \\ 1 & t > 0 \end{cases}
$$

```
syms
t
;
u0
(
t
)
= heaviside
(
t); % rename heaviside function for ease of use
A
=
2
; % so signal can be plotted
fplot(A*u0(t), [-1, 1]), ylim([-0.2, 2.2]), grid, title('Amplitude scaling
$$Au_0(t)$$'
,'interpreter'
,'latex'
)
```


Note that, because of the sign, the signal is mirrored about the x axis as well as being scaled by 2.

Time Reversal

Sketch $u_0(-t)$

Time Delay and Advance

Sketch $u_0(t-T)$ and $u_0(t+T)$

```
fplot(A*u0(-t),[-1,1]),ylim([-0.2,2.2]),grid,title('Time reversal $$Au_0(-
t)$$','interpreter','latex')
```


The sign on the function argument $-t$ causes the whole signal to be reversed in time. Note that another way of looking at this is that the signal is mirrored about the y axis.

```
T = 1; % again to make the signal plottable.
fplot(u0(t - T), [-1, 2]), ylim([0.2, 1.2]), grid, title('Time delay $$u_0(t - T)]T)$$','interpreter','latex')
```


This is a *time delay …* note for $u_0(t-T)$ the step change occurs T seconds **later** than it does for $u_o(t)$.

Examples

We will work through some examples in class. See [Worksheet](file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/elementary_signals/worksheet3.html) 3.

Synthesis of Signals from the Unit Step

Unit step functions can be used to represent other time-varying functions such as rectangular pulses, square waves and triangular pulses. See [Worksheet](file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/elementary_signals/worksheet3.html) 3 for the examples that we will look at in class.

This is a *time advance ...* note for $u_0(t+T)$ the step change occurs T seconds ${\sf earlier}$ than it does for $u_o(t)$.

file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/elementary_signals/index.html 6/10

When the current through the capacitor $i_c(t)=i_s$ is a constant and the voltage across the capacitor is

The Ramp Function

So, the voltage across the capacitor can be represented as

```
C = 1; is = 1;vc(t)=(is/C)*t*u0(t);
fplot(vc(t),[-1,4]),grid,title('A ramp function')
```

$$
v_c(t) = \frac{1}{C} \int_{-\infty}^t i_c(\tau) \ d\tau
$$

where τ is a dummy variable.

Since the switch closes at $t=0$, we can express the current $i_c(t)$ as

$$
i_c(t)=i_s u_0(t)\\
$$

and if $v_c(t)=0$ for $t < 0$ we have

$$
v_c(t)=\frac{i_s}{C}\int_{-\infty}^t u_0(\tau)\; d\tau=\underbrace{\frac{i_s}{C}\int_{-\infty}^0} _0 \, 0 \; d\tau+\frac{i_s}{C}\int_0^t 1 \; d\tau
$$

In the circuit shown above i_s is a constant current source and the switch is closed at time $t=0.$

$$
v_C(t)=\frac{i_s}{C}tu_0(t)
$$

Note that in this as in other examples throughout these notes, and in published tables of transforms, the inclusion of $u_0(t)$ in $v_c(t)$ acts as a "gating function" that limits the definition of the signal to the causal range $0\leq t<\infty.$ of the signal to the causal range $0 \leq t < \infty$.
To sketch the wave form, let's arbitrarily let C and i_s be one and then plot with MATLAB.

This type of signal is called a ramp function. Note that it is the *integral* of the step function (the resistor-capacitor circuit implements a simple integrator circuit).

Higher order functions of t can be generated by the repeated integration of the unit step function.

For future reference, you should determine $u_2(t)$, $u_3(t)$ and $u_n(t)$ for yourself and make a note of the general rule:

The unit ramp function is defined as

 $u_1(t) = \int$ t −∞ $u_0(\tau)d\tau$

so

and

Note

Details are given in equations 1.26—1.29 in Karris.

The Dirac Delta Function

$$
u_1(t)=\left\{\begin{matrix}0 & t<0\\ t & t\geq 0\end{matrix}\right.
$$

$$
u_0(t)=\frac{d}{dt}u_1(t)
$$

$$
u_{n-1}=\frac{1}{n}\frac{d}{dt}u_n(t)
$$

In the circuit shown above, the switch is closed at time $t=0$ and $i_L(t)=0$ for $t < 0.$ Express the inductor current $i_L(t)$ in terms of the unit step function and hence derive an expression for $v_L(t)$.

file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/elementary_signals/index.html 8/10

To solve this problem we need to invent a function that represents the derivative of the unit step function. This function is called $\delta(t)$ or the *dirac delta* function (named after <u>Paul Dirac</u>).

Solution

Thus

 $v_L(t)=L\frac{di_L}{dt}$ dt

Because the switch closes instantaneously at $t=0$

syms is L; $vL(t) = is * L * diff(u0(t))$

$vL(t) =$

The delta function

The unit impulse or the delta function, denoted as $\delta(t)$, is the derivative of the unit step.

This function is tricky because $u_0(t)$ is discontinuous at $t=0$ but it must have the properties

and

Sketch of the delta function

MATLAB Confirmation

Note that we can't plot dirac(t) in MATLAB with ezplot.

$$
i_L(t)=i_s u_0(t)\\
$$

$$
v_L(t) = i_s L \frac{d}{dt} u_0(t).
$$

$$
\int_{-\infty}^t \delta(\tau) d\tau = u_0(t)
$$

$$
\delta(t)=0\;\forall\;t\neq0.
$$

L*is*dirac(t)

$$
f(t)\delta(t-a) = f(a)\delta(t-a)
$$

$$
f(t)\delta(t)=f(0)\delta(t)
$$

$$
\int_{-\infty}^{\infty} f(t)\delta(t-\alpha)dt = f(\alpha)
$$

$$
\delta^n(t)=\frac{d^n}{dt^n}[u_0(t)]
$$

$$
f(t)\delta'(t-a)=f(a)\delta'(t-a)-f'(t)\delta(t-a)
$$

$$
\int_{-\infty}^{\infty}f(t)\delta^n(t-\alpha)dt=(-1)^n\frac{d^n}{dt^n}[f(t)]\bigg|_{t=\alpha}
$$

Important properties of the delta function
Sampling Property
Sampling Property

The summary consideration and the second of the second of

-
-
-

file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/elementary_signals/index.html 10/10

- The *Dirac delta* function $\delta(t)$ is the derivative of the unit step function. We sometimes refer to it as the unit impulse function.
- The delta function has sampling and sifting properties that will be useful in the development of time convolution and sampling theory.

Examples

We will do some of these in class. See [Worksheet](file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/elementary_signals/worksheet3.html) 3.

Homework

These are for you to do later for further practice. See [Homework](file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/homework/hw1.html) 1.

References

See **[Bibliography](file:///Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/_build/html/zbib.html)**

By Dr Chris P. Jobling © Copyright Swansea University (2019-2022).

This page was created by Dr Chris P. [Jobling](https://www.swansea.ac.uk/staff/engineering/c.p.jobling/) for Swansea [University](https://www.swansea.ac.uk/).