
Models of Discrete-Time Systems

Colophon
An annotatable worksheet for this presentation is available as Worksheet 17.

The Jupytext source code for this page is dt_systems/4/dt_models.md.

You can view the notes for this presentation as a webpage (HTML).

This page is downloadable as a PDF file.

Scope and Background Reading
In this section we will explore digital systems and learn more about the z-transfer function model.

The material in this presentation and notes is based on Chapter 9 (Starting at Section 9.7) of [Kar12]. I have skipped the section

on digital state-space models.
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Converting Continuous Time Systems to Discrete Time Systems

Example: Digital Butterworth Filter

Discrete Time Systems
In the lecture that introduced the z-transform we talked about the representation of a discrete-time (DT) system by the model

shown below:

In this session, we want to explore the contents of the central block.

DT System as a Sequence Processor

As noted in the previous slide, the discrete time system (DTS) `takes as an input the sequence  which in a physical

signal would be obtained by sampling the continuous time signal  using an analogue to digital converter (ADC).

It produces another sequence  by processing the input sequence in some way.

The output sequence is converted into an analogue signal  by a digital to analogue converter (DAC).

What is the nature of the DTS?
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The discrete time system (DTS) is a block that converts a sequence  into another sequence 

The transformation will be a difference equation

By analogy with CT systems,  is the impulse response of the DTS, and  can be obtained by convolving  with 

 so:

Taking the z-transform of  we get , and from the transform properties, convolution of the signal  by

system  will be multiplication of the z-transforms:

So, what does  and therefore  look like?

Transfer Functions in the Z-Domain
Let us assume that the sequence transformation is a difference equation of the form :

Take Z-Transform of both sides

From the z-transform properties

so….

Gather terms

from which …

Define the transfer function

We define the discrete time transfer function  so…

… or more conventionally :

DT impulse response

The discrete-time impulse reponse  is the response of the DT system to the input 

Last week we showed that

was defined by the transform pair

so
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We will work through an example in class.

[Skip next slide in Pre-Lecture]

Example 5

Karris Example 9.10:

The difference equation describing the input-output relationship of a DT system with zero initial conditions, is:

Compute:

1. The transfer function 

2. The DT impulse response 

3. The response  when the input  is the DT unit step 

5.1. The transfer function








































5.2. The DT impulse response

Start with:








































Matlab Solution

𝑦[𝑛] − 0.5𝑦[𝑛 − 1] + 0.125𝑦[𝑛 − 2] = 𝑥[𝑛] + 𝑥[𝑛 − 1]

𝐻(𝑧)

ℎ[𝑛]

𝑦[𝑛] 𝑥[𝑛] [𝑛]𝑢0

𝐻(𝑧) = =. . . ?
𝑌 (𝑧)

𝑈(𝑧)

=
𝐻(𝑧)

𝑧

𝑧 + 1

− 0.5𝑧 + 0.125𝑧2

clear all

imatlab_export_fig('print-svg')  % Static svg figures.

cd matlab

pwd

format compact


ans =

    '/Users/eechris/code/src/github.com/cpjobling/eg-247-
textbook/dt_systems/4/matlab'




See dtm_ex1_2.mlx. (Also available as dtm_ex1_2.m.)

The difference equation describing the input-output relationship of the DT system with zero initial conditions, is:

Transfer function

Numerator 

Denominator 

Poles and residues

Impulse Response

Plot the response

𝑦[𝑛] − 0.5𝑦[𝑛 − 1] + 0.125𝑦[𝑛 − 2] = 𝑥[𝑛] + 𝑥[𝑛 − 1]

+ 𝑧𝑧2

Nz = [1 1 0];


− 0.5𝑧 + 0.125𝑧2

Dz = [1 -0.5 0.125];


[r,p,k] = residue(Nz,Dz)


r =

   0.7500 - 0.5000i

   0.7500 + 0.5000i


p =

   0.2500 + 0.2500i

   0.2500 - 0.2500i


k =

     1


Hz = tf(Nz,Dz,1)

hn = impulse(Hz, 15);


Hz =


 


        z^2 + z


  -------------------


  z^2 - 0.5 z + 0.125


 


Sample time: 1 seconds


Discrete-time transfer function.


stem([0:15], hn)

grid

title('Example 5 - Part 2')

xlabel('n')

ylabel('Impulse response h[n]')


https://cpjobling.github.io/eg-247-textbook/dt_systems/4/matlab/dtm_ex1_2.mlx
https://cpjobling.github.io/eg-247-textbook/dt_systems/4/matlab/dtm_ex1_2.m
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Response as stepwise continuous y(t)

5.3. The DT step response

We will work through this example in class.

[Skip next slide in Pre-Lecture]

Solved by inverse Z-transform.

impulse(Hz,15)

grid

title('Example 5 - Part 2 - As Analogue Signal')

xlabel('nTs [s]')

ylabel('Impulse response h(t)')


𝑌 (𝑧) = 𝐻(𝑧)𝑋(𝑧)

[𝑛] ⇔𝑢0

𝑧

𝑧 − 1

𝑌 (𝑧) = 𝐻(𝑧) (𝑧)𝑈0 =

=

.
+ 𝑧𝑧2

− 0.5𝑧 + 0.125𝑧2

𝑧

𝑧 − 1

𝑧( + 𝑧)𝑧2

( − 0.5𝑧 + 0.125)(𝑧 − 1)𝑧2

=
𝑌 (𝑧)

𝑧

+ 𝑧𝑧2

( + 0.5𝑧 + 0.125)(𝑧 − 1)𝑧2










































Matlab Solution

See dtm_ex1_3.mlx. (Also available as dtm_ex1_3.m.)

Results

Modelling DT systems in MATLAB and Simulink
We will consider some examples in class

MATLAB

Code extracted from dtm_ex1_3.m:

open dtm_ex1_3


Ts = 1;

z = tf('z', Ts);


Hz = (z^2 + z)/(z^2 - 0.5 * z + 0.125)


Hz =


 


        z^2 + z


  -------------------


  z^2 - 0.5 z + 0.125


 


Sample time: 1 seconds


https://cpjobling.github.io/eg-247-textbook/dt_systems/4/matlab/dtm_ex1_3.mlx
https://cpjobling.github.io/eg-247-textbook/dt_systems/4/matlab/dtm_ex1_3.m
https://cpjobling.github.io/eg-247-textbook/dt_systems/4/matlab/dtm_ex1_3.m


Simulink Model

See dtm.slx:

Results

Converting Continuous Time Systems to Discrete Time
Systems

Discrete-time transfer function.


step(Hz)

grid

title('Example 1 - Part 3 - As Analogue Signal')

xlabel('nTs [s]')

ylabel('Step response y(t)')

axis([0,15,0,3.5])


dtm


https://cpjobling.github.io/eg-247-textbook/dt_systems/4/matlab/dtm.slx


In analogue electronics, to implement a filter we would need to resort to op-amp circuits with resistors, capacitors and

inductors acting as energy dissipation, storage and release devices.

In modern digital electronics, it is often more convenient to take the original transfer function  and produce an

equivalent .

We can then determine a difference equation that will respresent  and implement this as computer algorithm.

Simple storage of past values in memory becomes the repository of past state rather than the integrators and derivative

circuits that are needed in the analogue world.

To achieve this, all we need is to be able to do is to sample and process the signals quickly enough to avoid violating Nyquist-

Shannon’s sampling theorem.

Continuous System Equivalents

There is no digital system that uniquely represents a continuous system

This is because as we are sampling, we only have knowledge of signals being processed at the sampling instants, and

need to reconstruct the inter-sample behaviour.

In practice, only a small number of transformations are used.

The derivation of these is beyond the scope of this module, but in class we’ll demonstrate the ones that MATLAB

provides in a function called c2d

MATLAB c2d function

Let’s see what the help function says:

Example: Digital Butterworth Filter
Design a 2nd-order butterworth low-pass anti-aliasing filter with transfer function  for use in sampling music.

The cut-off frequency  kHz and the filter should have an attenuation of at least  dB in the stop band.

Choose a suitable sampling frequency for the audio signal and give the transfer function  and an algorithm to

implement 

Solution

𝐻(𝑠)

𝐻(𝑧)

ℎ[𝑛]

help c2d


 C2D  Converts continuous-time dynamic system to discrete time.

 

    SYSD = C2D(SYSC,TS,METHOD) computes a discrete-time model SYSD with

    sample time TS that approximates the continuous-time model SYSC.

    The string METHOD selects the discretization method among the following:

       'zoh'           Zero-order hold on the inputs

       'foh'           Linear interpolation of inputs

       'impulse'       Impulse-invariant discretization

       'tustin'        Bilinear (Tustin) approximation.

       'matched'       Matched pole-zero method (for SISO systems only).

       'least-squares' Least-squares minimization of the error between

                       frequency responses of the continuous and discrete

                       systems (for SISO systems only).

       'damped'        Damped Tustin approximation based on TRBDF2 formula

                       (sparse models only).

    The default is 'zoh' when METHOD is omitted. The sample time TS should

    be specified in the time units of SYSC (see "TimeUnit" property).

 

    C2D(SYSC,TS,OPTIONS) gives access to additional discretization options. 

    Use C2DOPTIONS to create and configure the option set OPTIONS. For 

    example, you can specify a prewarping frequency for the Tustin method by:

       opt = c2dOptions('Method','tustin','PrewarpFrequency',.5);

       sysd = c2d(sysc,.1,opt);

 

    For state-space models,

       [SYSD,G] = C2D(SYSC,Ts,METHOD)

    also returns the matrix G mapping the states xc(t) of SYSC to the states 

    xd[k] of SYSD:

       xd[k] = G * [xc(k*Ts) ; u[k]]

    Given an initial condition x0 for SYSC and an initial input value u0=u(0), 

    the equivalent initial condition for SYSD is (assuming u(t)=0 for t<0):

       xd[0] = G * [x0;u0] .

 

    See also C2DOPTIONS, D2C, D2D, DYNAMICSYSTEM.



    Documentation for c2d

       doc c2d



    Other functions named c2d



       DynamicSystem/c2d    ltipack.tfdata/c2d


doc c2d


𝐻(𝑠)

= 20𝜔𝑐 −80

𝐻(𝑧)

ℎ[𝑛]



See digi_butter.mlx.

First determine the cut-off frequency 

From the lecture on filters, we know the 2nd-order butterworth filter has transfer function:

Substituting for  this is …?

Bode plot

MATLAB:
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Bode Diagram

Frequency  (rad/s)

Sampling Frequency

From the bode diagram, the frequency roll-off is -40 dB/decade for frequencies . So,  dB is

approximately 2 decades above .

𝜔𝑐

= 2𝜋 = 2 × 𝜋 × 20 × rad/s𝜔𝑐 𝑓𝑐 10
3

wc = 2*pi*20e3


wc =

   1.2566e+05


= 125.6637 × rad/s𝜔𝑐 10
3

𝐻(𝑠) = =
𝑌 (𝑠)

𝑈(𝑠)

𝜔2
𝑐

+ 𝑠 +𝑠2 𝜔𝑐 2‾√ 𝜔2
𝑐

= 125.6637 ×𝜔𝑐 103

Hs = tf(wc^2,[1 wc*sqrt(2), wc^2])


Hs =


 


           1.579e10


  ---------------------------


  s^2 + 1.777e05 s + 1.579e10


 


Continuous-time transfer function.


𝐻(𝑠) =
15.79 × 109

+ 177.7 × 𝑠 + 15.79 ×𝑠2 103 109

doc bode

bode(Hs,{10e4,10e8})

grid


𝜔 ≫ 𝜔𝑐 |𝐻(𝑗𝜔)| = −80

𝜔𝑐

w_stop = 100*wc


https://cpjobling.github.io/eg-247-textbook/dt_systems/4/matlab/digi_butter.mlx


To avoid aliasing, we should choose a sampling frequency twice this = ?

 rad/s.

Sampling frequency ( ) in Hz = ?

Sampling time 

Digital Butterworth

zero-order-hold equivalent

Step response

w_stop =

   1.2566e+07


= 2 ×𝜔𝑠 𝜔stop

ws = 2* w_stop


ws =

   2.5133e+07


𝑓𝑠

= /(2𝜋) Mhz𝑓𝑠 𝜔𝑠

fs = ws/(2*pi)


fs =

     4000000


= 4 Mhz𝑓𝑠

=?𝑇𝑠

= 1/𝑓𝑠 s𝑇𝑠

Ts = 1/fs


Ts =

   2.5000e-07


= 1/ = 0.25 𝜇s𝑇𝑠 𝑓𝑠

Hz = c2d(Hs, Ts)


Hz =


 


  0.0004862 z + 0.0004791


  -----------------------


  z^2 - 1.956 z + 0.9565


 


Sample time: 2.5e-07 seconds


Discrete-time transfer function.


step(Hz)




Algorithm

From previous result:

Dividing top and bottom by  …

expanding out …

Inverse z-transform gives …

in algorithmic form (compute  from past values of  and ) …

Block Diagram of the digital BW filter

As Simulink Model

digifilter.slx

𝐻(𝑧) = =
𝑌 (𝑧)

𝑈(𝑧)

486.2 × 𝑧 + 479.1 ×10−6 10−6

− 1.956𝑧 + 0.9665𝑧2

𝑧2

𝐻(𝑧) = =
𝑌 (𝑧)

𝑈(𝑧)

486.2 × + 479.1 ×10−6𝑧−1 10−6𝑧−2

1 − 1.956 + 0.9665𝑧−1 𝑧−2

𝑌 (𝑧) − 1.956 𝑌 (𝑧) + 0.9665 𝑌 (𝑧) =𝑧−1 𝑧−2

486.2 × 𝑈(𝑧) + 479.1 × 𝑈(𝑧)10−6𝑧−1 10−6𝑧−2

𝑦[𝑛] − 1.956𝑦[𝑛 − 1] + 0.9665𝑦[𝑛 − 2] =

486.2 × 𝑢[𝑛 − 1] + 479.1 × 𝑢[𝑛 − 2]10−6 10−6

𝑦[𝑛] 𝑢 𝑦

𝑦[𝑛] = 1.956[𝑛 − 1] − 0.9665𝑦[𝑛 − 2] + 486.2 × 𝑢[𝑛 − 1]+. . .10−6

479.1 × 𝑢[𝑛 − 2]10−6

open digifilter


https://cpjobling.github.io/eg-247-textbook/dt_systems/4/matlab/digifilter.slx
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Convert to code

To implement:

Comments

PC soundcards can sample audio at 44.1 kHz so this implies that the anti-aliasing filter is much sharper than this one as 

 kHz.

You might wish to find out what order butterworth filter would be needed to have  kHz and  of 22.05 kHz.

Summary
Discrete Time Systems

Transfer Functions in the Z-Domain

Modelling digital systems in MATLAB/Simulink

Continuous System Equivalents

In-class demonstration: Digital Butterworth Filter

Reference
[Kar12]

Steven T. Karris. Signals and systems with MATLAB computing and Simulink modeling. Orchard Publishing, Fremont, CA.,

2012. ISBN 9781934404232. Library call number: TK5102.9 K37 2012 LOCATE. URL:

https://ebookcentral.proquest.com/lib/swansea-ebooks/reader.action?docID=3384197.

Solutions to Example 5

Solution to 5.1.

The transfer function is

Solution to 5.2.

The DT impulse response:

Solution to 5.3.

Step response:

𝑦[𝑛] = 𝑦[𝑛] = 1.956[𝑛 − 1] − 0.9665𝑦[𝑛 − 2] + 486.2 × 𝑢[𝑛 − 1] + 479.1 × 𝑢[𝑛 − 2]10
−6

10
−6

/* Initialize */

Ts = 0.25e-06; /* more probably some fraction of clock speed */

ynm1 = 0; ynm2 = 0; unm1 = 0; unm2 = 0;

while (true) {

    un = read_adc;

    yn = 1.956*ynm1 - 0.9665*ynm2 + 486.2e-6*unm1 + 479.1e-6*unm2;

    write_dac(yn);

    /* store past values */

    ynm2 = ynm1; ynm1 = yn;

    unm2 = unm1; unm1 = un;

    wait(Ts);

}


/2 = 22.05𝑓𝑠

= 20𝑓𝑐 𝑓stop

𝐻(𝑧) = =
𝑌 (𝑧)

𝑋(𝑧)

+ 𝑧𝑧2

− 0.5𝑧 + 0.125𝑧2

ℎ[𝑛] = (cos( ) + 5 sin( ))( )2‾√
4

𝑛
𝑛𝜋

4

𝑛𝜋

4

𝑦[𝑛] = (3.2 − (2.2 cos( ) + 0.6 sin( ))) [𝑛]( )
2‾√
4

𝑛
𝑛𝜋

4

𝑛𝜋

4
𝑢0
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https://www.swansea.ac.uk/
https://ebookcentral.proquest.com/lib/swansea-ebooks/reader.action?docID=3384197

