
Unit 5.1: Sampling Theory

Contents
Colophon

Scope and Background Reading

Agenda

Acknowledgements

Introduction

Sampling CT Signals

Signal Reconstruction

Aliasing

DT Processing of CT Signals

Sampling of DT Signals

Summary

References

MATLAB Functions used

Colophon
The source code for this page is dt_systems/1/sampling.ipynb.

You can view the notes for this presentation as a webpage (HTML).

This page is downloadable as a PDF file.

Scope and Background Reading
This session is an introduction to sampling theory. It reviews the important ideas that

pertain to sampling but leaves the detailed mathematics for your further study.

The material in this presentation and notes is based on Chapter 15 of [Boulet, 2006] from

the Recommended Reading List and youʼll find the mathematical treatments there. There
Skip to main content

https://github.com/cpjobling/eg-247-textbook/blob/master/dt_systems/1/sampling.ipynb
https://cpjobling.github.io/eg-247-textbook/dt_systems/1/sampling.html
https://cpjobling.github.io/eg-247-textbook/dt_systems/1/sampling.pdf
https://cpjobling.github.io/eg-247-textbook/zbib.html#id9

is much more detail in Chapter 9 of [Karris, 2012] from the Required Reading List.

Agenda
Sampling of Continuous-Time Signals

Signal Reconstruction

Discrete-time Processing of Continuous-Time Signals

Sampling of Discrete-Time Systems

Acknowledgements
We will be using an adaptation of a pair of demo scripts to illustrate alialising. These

scripts were published by Prof. Charles A. Bouman, School of Electrical and Computer

Engineering, Purdue University as part of the course materials for ECE438: Digital Signal

Processing.

Introduction
The sampling process provides the bridge between continuous-time (CT) and

discrete-time (DT) signals

Sampling records discrete values of a CT signal at periodic instants of time.

Sampled data can be used in real-time or off-line processing

Sampling opens up possibility of processing CT signals through finite impulse

response (FIR) and infinite impulse response (IIR) filters.

Basic set up

In Class Demo 1: Sampling

I need a volunteer to provide a sound sample ….

�. I will use this Live Script sampling_demo.mlx to sample your voice.

�. I will then playback the recording.

�. I will the plot the data.
Skip to main content

https://ebookcentral.proquest.com/lib/swansea-ebooks/reader.action?docID=44853&ppg=329
https://cpjobling.github.io/eg-247-textbook/zbib.html#id7
https://engineering.purdue.edu/VISE/ee438/demos/
https://engineering.purdue.edu/VISE/ee438/demos/
https://uk.mathworks.com/help/matlab/matlab_prog/what-is-a-live-script-or-function.html
https://cpjobling.github.io/eg-247-textbook/dt_systems/1/matlab/sampling_demo.mlx

Technical Details

Sampling rate: 8000 samples per second (fs = 8 kHz)

Resolution: 8 bits per sample

Channels: 1 channel.

Reconstruction: MATLAB plays the audio back at 8192 samples per second.

Question

What will the bit-rate be for playback?

Sampling CT Signals
What is going on here?

Time domain

Sampling can be modelled as the multiplication of a continuous-time signal by a sequence

of periodic impulses as illustrated here.

clearvars
format compact
cd matlab
pwd

ans =
 '/Users/eechris/code/src/github.com/cpjobling/eg-247-textbook/dt_systems

open sampling_demo

Skip to main content

This is a form of modulation

 is the period of the periodic sampling function.

Frequency domain

Multiplication in the time domain is convolution in the frequency domain

 is the frequency of the periodic sampling function = .

The Mathematics

The Sampled signal:

Frequency convolution:

Ts

ωs 2π/Ts

xs(t) =
+∞

∑
k=−∞

x(kTs)δ(t − kTs)

Skip to main content

Sampling property:

Sifting property:

Nyquist-Shannon Sampling Theorem
Gives a sufficient condition to recover a continuous time signal from its samples ,

 is an integer.

Sampling Theoreom

Let be a band-limited signal with for .

Then is uniquely determined by its samples , if

where is the sampling frequency.

Xs(ω) =
1

Ts

∫
+∞

−∞

X(υ)
+∞

∑
k=−∞

δ(t − υ − kωs) dυ

Xs(ω) =
1

Ts

∫
+∞

−∞

+∞

∑
k=−∞

X(ω − kωs)δ(t − υ − kωs) dυ

Xs(ω) =
1

Ts

+∞

∑
n=−∞

X(ω − kωs)

x(nTs)

n

x(t) X(ω) = 0 |ω| > ωM

x(t) x(nTs) −∞ < n < +∞

ωs > 2ωM ,

ωs = 2π/Ts

Skip to main content

Recovery of signal by filtering

Recovered signal

Ideal Lowpass Filter for CT Recovery from DT
Sampled Signal

This is of course theoretical only!

Skip to main content

Sample-and-hold

Sample-and-hold operator

In Class Demo 2

Illustrating Sampling in MATLAB

You can generate all the images in this presentation by running the MATLAB Live Script:

sampling.mlx.

open sampling

w0 = 1; % fundamental frequency rad/s
t0=2*pi/w0; % period s
tmax = 1.5*t0; % plottable range

Skip to main content

https://cpjobling.github.io/eg-247-textbook/dt_systems/1/matlab/sampling.mlx

Define a suitable signal

We will use a system with an underdamped second-order response.

The transfer function is:

Calculate and plot the impulse response

H(s) =
ω2

0

s2 + 2ζω0s + ω2
0

syms s t
zeta = 0.3;
H = w0^2/(s^2 + 2*zeta*w0*s + w0^2)

H =

1/(s^2 + (3*s)/5 + 1)

h = ilaplace(H)

h =

(10*91^(1/2)*exp(-(3*t)/10)*sin((91^(1/2)*t)/10))/91

t = linspace(0,tmax,100);
xc = eval(h); % eval evaluates a symbolic expression as a MATLAB command.
tc = t;

plot(tc,xc)
title('Fig 1: Continuous Time Signal x(t)')
ylabel('x(t)')
xlabel('Time t [s]')

Skip to main content

Calculate and plot the sampled data|

ws = 4*w0; % twice minimum!
Ts = (2*pi)/ws;
t = 0:Ts:tmax;
xs = eval(h);
td = t;

stem(td,xs)
hold on
plot(tc,xc,'r:')
hold off
title('Fig 2: Sampled Signal x_s(t)')
ylabel('x_s(t)')
xlabel('Time t [s]')

Skip to main content

Notes

The sampled signal carries the same information as the samples themselves, so we

should be able to recover the entire signal .

From the block diagram of the sample-and-hold operator, what we would need to do is

find the inverse of the ZOH system with impulse response and then use a perfect

lowpass filter.

The frequency response is given by the usual sinc function for an even rectangular

pulse signal, multiplied by because we need a time delay of to make the

signal causal:

The inverse of is given by

x0(t)

x(t)

h0(t)

H0(ω)

e−jωTs/2 Ts/2

H0(ω) = Tse
−jωTs/2

sin(π Ts

2π ω)

π
Ts

2π ω
= 2e−jωTs/2 sin (ωTs/2)

ω

H0(ω)

H1(ω) = H−1(ω) =
1

2
ejω

Ts
2

ω

sin(Ts

2 ω)

Skip to main content

The reconstruction filter is the cascade of the inverse filter and the lowpass filter:

The frequency response of this filter and additional notes are to be found on Page 546 of

[Boulet, 2006].

Signal Reconstruction
Problem

We have a bandlimited signal that is sampled at the Nyquist-Shannon sampling

frequency .

We therefore have a discrete-time (DT) signal from which we want to

reconstruct the original signal.

Perfect Signal Interpolation Using sinc
Functions

In the frequency domain, the ideal way to reconstruct the signal would be to construct

a chain of impulses and then to filter this signal with an ideal lowpass filter.

In the time domain, this is equivalent to interpolating the samples using time-shifted

sinc functions with zeros at for .

In Class Demo 3: MATLAB Demonstrations of

Hr(ω) = TsHlp(ω)H1(ω)

ωs = 2π/Ts

x(nTs)

xs(t)

nTs ωc = ωs

Skip to main content

https://cpjobling.github.io/eg-247-textbook/zbib.html#id9

signal reconstruction

Reconstruction with sinc function

stem(td,xs)
hold on

x = zeros(length(td),length(tc));
for k=1:length(td)
 xk = xs(k);
 sincx = xk*sin(pi*(tc - td(k))/Ts)./(pi*(tc - td(k))/Ts);
 x(k,:) = sincx;
end

plot(tc,x,'-.')
hold off
title('Fig 5: Signal x(t) reconstructed with sinc functions')
ylabel('x(t)')
xlabel('Time t [s]')

Skip to main content

Each impulse in triggers the impulse reponse of the lowpass filter (the sinc signal),

the resulting signal at the output of the filter is the sum of all these time-shifted sinc

signals with amplitudes equal to the samples .

(Note we have defined as .)

Reconstructed signal

Obtained by summing all the sinc functions

xs(t)

x(t)

x(nTs)

x(t) =
+∞

∑
k=−∞

x(nTs)sinc(
t − nTs

Ts

)

sinc(x) sin(πx)/(πx)

plot(tc,sum(x),tc,xc,'r:')
title('Fig 6: Reconstruction with sinc functions')
ylabel('x(t)')

Skip to main content

This is clearly unfeasible, at least in real-time, so we have to resort to approximations of

the ideal low-pass filter.

A couple of examples are given below. Boulet gives more information including an

evaluation of the quality of the approximation.

In practice, the zero-order-hold is often used in practice and a low-pass filter with a flat

passband (such as the Butterworth filter discussed in the last lecture) would be used. In

audio applications, for example, the low-pass nature of speakers and the human ear add

additional smoothing. For non HiFi applications (e.g. an MP3 player), this may be all that is

actually used!

Signal reconstructed with zero-order hold (ZOH)

stairs(td,xs)
hold on
plot(tc,xc,'r:')
title('Fig 3: Signal x(t) reconstructed with zero-order-hold')
ylabel('x(t)')
xlabel('Time t [s]')

Skip to main content

Signal reconstructed with First-order hold (FOH)

plot(td,xs,'bo-',tc,xc,'r:')
title('Fig 4: Signal x(t) reconstructed with first-order-hold')
ylabel('x(t)')
xlabel('Time t [s]')

Skip to main content

Aliasing
Aliasing Occurs when the sampling frequency is too low to ovoid overlapping between

the spectra.

When aliasing occours, we have violated the sampling theorem: that is .

When aliasing occurs, the original signal cannot be recovered by lowpass filtering.

An Aliased Signal

ωs < 2ωm

Skip to main content

In Class Demo 4

Demo 4.1

We use the recording made at the start and run it through a script that effectively aliases

the original signal be reducing the sampling frequency to less than half the original

sampling frequency.

Here s̓ the script: aliaseg1.mlx that Iʼll be using. (Also available as an m-file aliaseg1.m)

Demo 4.2

Assume signal is sampled at a rate of , violating the

sampling theorem.

We can see the effect on the plot below:

open aliaseg1

x(t) = cos(ω0t) ωs = 1.5ω0

open aliasing

Skip to main content

https://cpjobling.github.io/eg-247-textbook/dt_systems/1/matlab/aliaseg1.mlx
https://cpjobling.github.io/eg-247-textbook/dt_systems/1/matlab/aliaseg1.m

Image generated by aliasing.mlx (Also available as aliasing.m).

You should confirm for yourself that after lowpass filtering the spectrum with a filter with

cutofff frequency that the signal returned is the spectrum of

Antialising Filters

Most real signals are not band-limited so we have to artificially make them

bandlimited using an anti-aliasing filter.

An anti-aliasing filter is a low-pass filter whose cutoff frequency is lower than half the

sampling frequency.

This can produce some distortion at high-frequencies but this is often better than the

distortion that would occur at low frequencies if aliasing was allowed to happen.

For more on this topic see Pages 551—552 of Boulet.

Demo 4.3

This example uses anti-aliasing to downsample the audio. You should hear that the sound

is less distorted as we sample below the sampling frequency of 8 kHz.

Script: aliaseg2.mlx (Also available as an m-file aliaseg2.m)

Practical application - digital audio

Human beings can hear sounds with frequencies up to around 20 kHz so when recording

music in the modern sound studio (or phone or PC for that matter) the audio signal is

antialiased with a 22 kHz filter. The signal is then sampled at 44.1 kHz before being stored

for later processing and/or playback.

ADCs with 14 bit or higher resolution are used for the sampling operation.

ωc = ωs/2

x(t) = cos(ω0t/2)

open aliaseg2

Skip to main content

https://cpjobling.github.io/eg-247-textbook/dt_systems/1/matlab/aliasing.mlx
https://cpjobling.github.io/eg-247-textbook/dt_systems/1/matlab/aliasing.m
https://cpjobling.github.io/eg-247-textbook/dt_systems/1/matlab/aliaseg2.mlx
https://cpjobling.github.io/eg-247-textbook/dt_systems/1/matlab/aliaseg2.m

DT Processing of CT Signals

The concepts presented in this session provide a model that allows us to cross the bridge

between the theoretical concept of impulse chain sampling through to a representation of

a signal as discrete sequence (to be introduced next lecture) and back to a

continuous-time signal via reconstruction.

The mathematics predicts the nature of the signals that are processed in the ideal case,

but we will leave it with you to study these for yourself. (See Boulet pp 552—557).

In practice, modern digital processing relies on the use of an analogue-to-digital converter

(ADC) (which also introduces amplitude quantization), finite-length arithmetic inside the

discrete-time system (usually a microprocessor, microcontroller or digital signal

processor), followed by conversion back to a step-wise continuous signal via a digital to

analogue converter (DAC) that operates like a zero-order-hold.

Sampling of DT Signals
In modern signal processing and digital communications many of the operations that

were once done in continuous time are now done entirely in discrete time.

For example, we can implement sampling and modulation in discrete time.

We can also upsample (interpolate between samples) or downsample (reduce the

number of samples in a discrete-time signal)

These topics are left to you for further study.

Summary
Sampling of Continuous-Time Signals

x[n]

Skip to main content

Signal Reconstruction

Aliasing

Discrete-time Processing of Continuous-Time Signals

Sampling of Discrete-Time Systems

Next session

The Z-Transform

Answer to Question

bit rate = [number of samples per second] x [number of bits per sample] x [number of

channels]

bit rate = bits/second [baud]

bit rate = bits/second

References
See Bibliography.

MATLAB Functions used
The matlab recorder command is: recorder =

audiorecorder(Fs,nBits,nChannels);

Sound is recorded using: recordblocking(recObj, time);

Recorded sound is played back: play(recorder);

Sound is extracted as Matlab data using: x = getaudiodata(recorder);

Sound is plotted against sample number using: plot(x)

I extracted 50 points for the stem plot using

stem([1000:1049],myRecording(1000:1049))

Sound is saved as an audio file using: audiowrite(audioFile,myRecording,Fs);

where audiofile is a filename in form name.extension . Supported extensions are

'.wav' , '.ogg' , and '.flac' on all platforms. Windows and Mac support '.m4m'

and ‘ .mp4 .̓

8192 × 8 × 1

65, 536

Skip to main content

https://cpjobling.github.io/eg-247-textbook/zbib.html

Sound is loaded using [x,Fs]=audioread(audioFile); . Additional file formats are

supported for reading including '.mp3' .

Frequency response spectra were generated using the fast Fourier transform (fft)

function.

Multiple graphs in one figure window is achieved using subplot .

For more information use doc command from the command-line.

Previous
Unit 5: Sampled Data Systems

Next
Unit 5.2: Discrete-Time

Systems and the Z-Transform

https://cpjobling.github.io/eg-247-textbook/dt_systems/index.html
https://cpjobling.github.io/eg-247-textbook/dt_systems/2/z_transform.html

