
Unit 6.2: The Fast Fourier
Transform

Contents
Colophon

Scope and Background Reading

Agenda

The inefficiency of the DFT

The Fast Fourier Transform (FFT)

Efficiency of the FFT

In Class Demonstrations

Frequency and Amplitude Scaling

Summary

Homework

Coming next

References

Solutions

Colophon
An annotatable worksheet for this presentation is available as Worksheet 19.

The source code for this page is dft/1/dft.ipynb.

You can view the notes for this presentation as a webpage (HTML).

This page is downloadable as a PDF file.

Scope and Background Reading
This session introduces the fast fourier transform (FFT) which is one of the most widely

used numerical algorithms in the world. It exploits some features of the symmetry of theSkip to main content

https://github.com/cpjobling/eg-247-textbook/blob/master/dft/2/fft.ipynb
https://cpjobling.github.io/eg-247-textbook/dft/2/fft.html
https://cpjobling.github.io/eg-247-textbook/dft/2/fft.pdf

computation of the DFT to reduce the complexity from something that takes order (

) complex operations to something that takes order ()

operations.

The FFT is to be found in all manner of signal and image processing algorithms, and

because it is more efficient than the DFT, you will find it exploited in hundreds of signal

processing applications.

As one example, it turns out that the computation of the convolution of two long DT

sequences is more efficient if the FFT of the two signals is taken, the product of the

frequency spectra is computed, and the Inverse DFT of the result is computed.

In this presentation, we will not go through the mathematical development of the FFT,

please read section 10.6 of Karris if you want the details. Here we will concentrate on the

benefits to be gained by using the FFT and give some examples of its use in MATLAB.

Acknowledgements

The material in this presentation and notes is based on Chapter 10 of [Karris, 2012] from

the Required Reading List. The models of the FFT signal flow graphs and Simulink block

diagrams are based on the presentation given in Section 12.5 of [Phillips et al., 2014].

Agenda
The inefficiency of the DFT

The FFT - a sketch of its development

An illustration of part of the FFT algorithm

FFT v DFT

Two examples

Frequency and Amplitude Scaling

The inefficiency of the DFT
Consider a signal whose highest frequency is 18 kHz, the sampling frequency is 50 kHz,

and 1024 samples are taken, i.e., .

N 2

O(N 2) N logN O(N logN)

N = 1024
Skip to main content

https://ebookcentral.proquest.com/lib/swansea-ebooks/reader.action?docID=44853&ppg=405
https://cpjobling.github.io/eg-247-textbook/zbib.html#id7
https://cpjobling.github.io/eg-247-textbook/zbib.html#id10
https://cpjobling.github.io/eg-247-textbook/zbib.html#id10
https://cpjobling.github.io/eg-247-textbook/zbib.html#id10

The time required to compute the entire DFT would be:

To compute the number of operations required to complete this task, let us expand the N-

point DFT defined as:

Then

It is worth remembering that

Since is a complex number, the computation of any frequency component

requires complex multiplications and complex additions

 complex arithmetic operations are required to compute any frequency component

of

If we assume that is real, then only of the components are unique.

Therefore we would require complex operations to compute the

entire frequency spectrum.

For our example, the -point DFT, would require

complex operations

These would have to be completed in 20.48 ms.

t =
1024 samples

50 × 103 samples per second
= 20.48 ms

X[m] =
N−1

∑
n=0

x[n]W mn
N

X[0] = x[0]W 0
N + x[1]W 0

N + x[1]W 0
N + ⋯ + x[N − 1]W 0

N

X[1] = x[0]W 0
N + x[1]W 1

N + x[1]W 2
N + ⋯ + x[N − 1]W N−1

N

X[2] = x[0]W 0
N + x[1]W 2

N + x[1]W 4
N + ⋯ + x[N − 1]W 2(N−1)

N

⋯

X[N − 1] = x[0]W 0
N + x[1]W N−1

N + x[1]W 2(N−1)
N + ⋯ + x[N − 1]W (N−1)2

N

W 0
N = exp(−j

2π
N

(0)) = 1.

W i
N X[k]
N N

2N
X[k].1

x[n] N/2 X[m]

2N × N/2 = N 2

2

N = 1024 10242 = 1, 048, 576

Skip to main content

This may be possible with modern computing hardware, perhaps even in a mobile

phone, but it seems impractical.

Fortunately, many of the terms in the computation are unity ().

Moreover, because the points are equally spaced points on the unit circle;

And because is a power of 2, the points on the upper-half plane (range

are the mirror image of the points on the lower-half plane range ;

Thus, there is a great deal of symmetry in the computation that can be exploited to

simplify the computation and reduce the number of operations considerably to a much

more manageable operations .

This is possible with the algorithm called the FTT (fast Fourier transform) that was originally

developed by James Cooley and John Tukey and has been considerably refined since.

The Fast Fourier Transform (FFT)
The FFT is very well documented, including in Karris, so we will only sketch its development

and present its main result. However, we will illustrate part of the algorithm to make

concrete an idea of the efficiency advantage that the FFT has over the DFT that we have

already seen.

Much of the development follows from the properties of the rotating vector.

which results in some simplifications and mathematical short-cuts when is a power of 2.

The most useful properties are:

WN = ±1

W i
N

N 0 < θ < π

π < θ < 2π

N log2 N
3

4

WN = exp(−
j2π
N

)

N

W N
N = exp(−j

2π
N

N) = exp (−j2π) = 1.

W
N/2
N = exp(−j

2π
N

N

2
) = exp (−jπ) = −1.

W
N/4
N = exp(−j

2π
N

N

4
) = exp (−jπ/2) = −j.

W
3N/4
N = exp(−j

2π
N

3N
4

) = exp (−j3π/2) = j.

Skip to main content

https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/James_Cooley
https://en.wikipedia.org/wiki/John_Tukey

Representing

in matrix form:

This is a complex Vandemonde matrix and it is more compactly expressed as:

The algorithm developed by Cooley and Tukey is based on matrix decomposition methods,

where the matrix is factored into smaller matrices, that is:

where is chosen as or .

Each row of the matrices on the right side of the decomposition, contains only two, non-

zero terms, unity and .

And the DFT sequence is:

W kN
N = exp(−j

2π
N

kN) = exp (−j2π) = 1, k = 0, 1, 2, …

W kN+r
N = exp(−j

2π
N

kN) exp(−j
2π
N

r) = 1.W r
N = W r

N .

W k
2N = exp(−j

2π
2N

k) = exp(−j
2π
N

k

2
) = W

k/2
N .

X[0] = x[0]W 0
N + x[1]W 0

N + x[2]W 0
N + ⋯ + x[N − 1]W 0

N

X[1] = x[0]W 0
N + x[1]W 1

N + x[2]W 2
N + ⋯ + x[N − 1]W N−1

N

X[2] = x[0]W 0
N + x[1]W 2

N + x[2]W 4
N + ⋯ + x[N − 1]W 2(N−1)

N

⋯

X[N − 1] = x[0]W 0
N + x[1]W N−1

N + x[2]W 2(N−1)
N + ⋯ + x[N − 1]W (N−1)2

N

= .

⎡⎢⎣ X[0]
X[1]
X[2]

⋮
X[N − 1]

⎤⎥⎦ ⎡⎢⎣W 0
N W 0

N W 0
N ⋯ W 0

N

W 0
N W 1

N W 2
N ⋯ W N−1

N

W 0
N W 2

N W 4
N ⋯ W

2(N−1)
N

⋯ ⋯ ⋯ ⋯ ⋯

W 0
N W N−1

N W
2(N−1)
N ⋯ W

(N−1)2

N

⎤⎥⎦⎡⎢⎣ x[0]
x[1]
x[2]

⋮
x[N − 1]

⎤⎥⎦X[m] = WNx[n]

WN L

WN = W1W2W3 ⋯ WL

L L = log2 N N = 2L

W k
N

Skip to main content

https://en.wikipedia.org/wiki/Vandermonde_matrix

The FFT computation starts with matrix . It operates on producing a row vector,

and each component of the row vector is obtained by one multiplication and one addition.

This is because there are only two non-zero elements on a given row, and one of those

elements is unity. Since there are components of , there will be complex

multiplications and complex additions.

This new vector is then operated on by the matrix, then on and so on, until

the entire operation is completed.

It appears that the entire operation would require complex additions and

also complex additions.

However, since , , and other simplifications, it is estimated that only

about half of these, that is, total complex arithmetic operations are required by

the FFT versus the required by the DFT .

Decomposition-in-Time FFT Algorithm

This development follows (Philips, et al., 2015). It is called the decomposition-in-time (DIT),

radix-2, FFT.

It allows us to visualize the FFT as a block diagram (for simulation) or a signal flow graph

(for ease of drawing).

We start from a 2-point FFT (), and work up to an 8-point FFT () before

generalizing the result.

We have implemented each algorithm in Simulink so we are able illustrate these structures

with executable examples as we go.

2-Point DFT

Because and , we write

X[m] = W1W2W3 ⋯ WLx[n].

WL x[n]

N x[n] N

N

WL−1 WL−2

NL = N log2 N

N log2 N

W 0
N = 1 W

N/2
N = −1
N log2 N

N 2 5

N = 2 N = 8

X[k] =
1

∑
n=0

x[n]W nk
2 = x[0]W 0k

2 + X[1]W 1k
2 , k = 0, 1.

W 0k
2 = exp (j0) = 1 W 1k

2 = exp (−jπk) = (−1)k

Skip to main content

In general for the 2-point DFT, we have

An equivalent Simulink model in block diagram form is:

X[0] = x[0] + x[1];
X[1] = x[0] − x[1].

X[k] = x[0] + (−1)kx[1].

Skip to main content

Let’s See it in MATLAB

two_point_dft.slx

4-point DFT

The 4-point DFT is given by

As a result of the periodicity of the weighting factor, we can simplify this expression:

Using these results, we write

To clarify the next step, we define two new variables

Then,

cd matlab
clear all
format compact

open two_point_dft

X[k] =
3

∑
n=0

x[n]W nk
4 = x[0]W 0k

4 + x[1]W 1k
4 + x[2]W 2k

4 + x[3]W 3k
4 .

W nk
N = exp (−j(2π/N)nk);

W 0k
4 = 1;

W 1k
4 = exp (−j(π/2)k) = (−j)k;

W 2k
4 = exp (−jπk) = (−1)k;

W 3k
4 = W 2k

4 W 1k
4 = (−1)kW 1k

4 .

X[k] = x[0] + x[1]W 1k
4 + x[2](−1)k + x[3](−1)kW 1k

4 ,

X[k] = [x[0] + x[2](−1)k] [x[1] + x[3](−1)k]W 1k
4 .

xe[n] = x[2n], n = 0, 1;
xo[n] = x[2n + 1], n = 0, 1.

Skip to main content

https://cpjobling.github.io/eg-247-textbook/dft/2/matlab/two_point_dft.slx

The factors in brackets in this equation can be recognized as 2-point DFTs:

Note that and are periodic; for example,

and

The 4-point DFT then is

We see that the 4-point DFT can be computed by the generation of two 2-point DFTs,

followed by a recomposition of terms as shown in the signal flow graph below:

X[k] = [xe[0] + xe[1](−1)k] + [xo[0] + xo[1](−1)k]W 1k
4 .

Xe[m] = xe[0] + xe[1](−1)m, m = 0, 1;
Xo[m] = xo[0] + xo[1](−1)m, m = 0, 1.

Xe[k] Xo[k]

Xe[2] = xe[0] + xe[1](−1)2 = Xe[0]

Xo[3] = xo[0] + xo[1](−1)3 = Xo[1]

X[0] = Xe[0] + Xo[0]W 1(0)
4 = Xe[0] + Xo[0];

X[1] = Xe[1] + Xo[1]W 1(1)
4 = Xe[1] + Xo[1]W 1

4 ;

X[2] = Xe[0] − Xo[0]W 1(2)
4 = Xe[0] − Xo[0];

X[3] = Xe[1] − Xo[1]W 1(3)
4 = Xe[1] + Xo[1]W 1

4 .

Skip to main content

In other words,

[4-point DFT of] = [2-point DFT of] + [2-point DFT of].

SIMULINK Model of 4-Point DFT

four_point_dft.slx

In Class Example 1

Use four-point DIT FFT to confirm that the DFT of the sequence

is

x[n] xe[n] W 1k
4 xo[n]

open four_point_dft

x[n] = [1, 2, 3, 4]

X[m] = [10, −2 + j2, −2, −2 − j2].

Skip to main content

https://cpjobling.github.io/eg-247-textbook/dft/2/matlab/four_point_dft.slx

8-point DFT

After some manipulation, not reproduced here, it can be shown that the 8-point DFT is the

recombination of two, 4-point DFTs that operate on the even and odd numbered values in

the sequence respectively.

Signal flow graph of 8-point DFT

SIMULINK Model of 8-Point DFT

eight_point_dft.slx

X[k] =
7

∑
n=0

x[n]W nk
8 .

x[n]

open eight_point_dft

Skip to main content

https://cpjobling.github.io/eg-247-textbook/dft/2/matlab/eight_point_dft.slx

N-Point, radix-2 DIT FFT

In general, the -point, radix-2 DIT FFT is computed as the recomposition of two -

point FFTs) as shown in the buterfly diagram below

Decomposition-in-Frequency FFT

Another approach to forming the FFT is the so-called decomposition in frequency (DIF)

FFT.

We will not cover it’s development in detail (see Karris and Phillips et al.) if you want to

follow it through.

We instead illustrate the final result for the four-point DIF FFT.

N (N/2)

Skip to main content

Signal flow graph for 4-point DIF FFT

Note that the structure is a 4-point decompostion followed by two 2-point FFTs.

Also note that it is frequency that is the input to the DFT stage.

In Class Example 2

Use four two-point DIF FFT to confirm that the DFT of the sequence

is

Xn[k]

x[n] = [1, 2, 3, 4]

X[m] = [10, −2 + j2, −2, −2 − j2].

Skip to main content

SIMULINK Model of 4-Point DIF FFT

four_point_dif.slx

8-Point DIF FFT

I have created a Simulink model of the 8-point DIF FFT. I will create a signal flow graph to

go with it at some point in the future.

SIMULINK Model of 4-Point DIF FFT

eight_point_dif.slx

Efficiency of the FFT
Wether we implement it as a Decomposition-in-Time (DIT) or a Decomposition-in-

Frequency (DIF), the FFT ends up having approximately multiplications

and a similar number of complex additions or subtractions.

In other words, complex arithmetic operations.

As complex arithmetic, particularly multiplication, is very expensive, this is a great saving

over the DFT which has of order operations.

open four_point_dif

(N/2) log2(N)

(N) log2(N)

N 2

Skip to main content

https://cpjobling.github.io/eg-247-textbook/dft/2/matlab/four_point_dif.slx
https://cpjobling.github.io/eg-247-textbook/dft/2/matlab/eight_point_dif.slx

DFT and FFT Comparisons

Under the assumptions about the relative efficiency of the DFT and FFT we can create a

table like that shown below:

As you can see, the efficiency of the FFT actual gets better as the number of samples go

up!

However, there are other costs, such as the data storage needed for intermediate steps,

that need to be taken into account as well. For example, an 8-point FFT requires only a 3

stage decomposition, with each stage needing storage for 8 complex numbers. That is 24

in all. Whereas a 2048 sequence will require 11 stages, storing 2048 values each. That is a

total of 22,528 complex values .

In Class Demonstrations

FFT in MATLAB

The FFT algorithm is implemented, in MATLAB, as the function fft . We will conclude the

class by working through Exercises 6 and 7 from section 10.8 of Karris.

DFT FFT FFT/DFT

N %

8 3 64 24 37.5

16 4 256 64 25

32 5 1,024 160 15.6

64 6 4,096 384 9.4

128 7 16,384 896 5.5

256 8 65,536 2,048 3.1

512 9 261,144 4,608 1.8

1024 10 1,048,576 10,240 1

2048 11 4,194,304 22,528 0.5

log2 N N 2 N log2 N

6

Skip to main content

Example 3

Plot the Fourier transform of the rectangular pulse shown below, using the MATLAB fft

func-tion. Then, use the ifft function to verify that the inverse transformation produces

the rectangular pulse.

FFT for Example 3

The rectangular pulse can be produced like so

x = [linspace(-2,-1,50) linspace(-1,1,100) linspace(1,2,50)];
y = [linspace(0,0,50) linspace(1,1,100) linspace(0,0,50)];
stem(x,y);
N = length(x);

Skip to main content

and the FFT is produced as

unwind

stem(abs(fft(y))),xlabel('k'),ylabel('abs(fft)')

Skip to main content

The inverse FFT is obtained with

stem(-N/2+1:N/2,abs(fftshift(fft(y)))) % Note change in x index to get axis
xlabel('k'),ylabel('abs(fft)')

stem(x, ifft(fft(y)))

Skip to main content

Example 4

FFT Example 4

The triangular pulse is obtained with

x = linspace(-1,1,100);
y = [linspace(0,1,50) linspace(1,0,50)];
stem(x,y)
N = length(y);

Skip to main content

and the FFT is obtained with

The inverse FFT is obtained with

stem(-N/2 + 1:N/2, abs(fftshift(fft(y))))
xlabel('k'),ylabel('abs(fft)')

Skip to main content

Frequency and Amplitude Scaling
Let’s assume that you have a DT sequence sampled from a CT signal at some

period . When you apply the fft function to , the absolute values of the

frequency terms will have the distribution shown in fig:fft:1 starting at on

the left and going up to at the right.

DC is at , and the frequency terms for on the left of the plot

represent the positive frequencies. That is the frequencies computed on the unit circle

from radians.

The component that corresponds to the Nyquist frequency is at the centre of

the plot at radians or [1]

The FFT terms plotted on the right of the plot, from , correspond

to the negative frequencies and, for real signals, will be the complex conjugates of their

positive frequency terms. Thus the frequency plot will always be symmetric around the

Nyquist frequency.

As demonstrated above, we normally expect the frequency response to be symmetric

around and the fftshift function achieves that for us by shifting to

stem(ifft(fft(y)))

x[n] x(t)
Ts = 1/fs x[n]

X[K] K = 0
K = N − 1

K = 0 K = 1 → N/2

θ = 0 → −π

fn = fs/2

θ = −π K = N/2

K = N/2 + 1 → N − 1

f = 0 X[0]Skip to main content

, reversing the sequence of negative frequencies, and plotting them between

 and .

However, even when shifted in this way, the -axis of the FFT plot only represents the

sequence number not frequency.

Furthermore, the amplitude of the frequency terms is related to the FFT algorithm

rather than the physical size of the frequency components in the original signal.

Also, we often only care about the postive frequencies and so usually present the FFT

data as a single-sided plot.

To achieve a single sided FFT plot against frequency, with realistic amplitudes, and valid

values of power and power spectral density for power plots, we need to make some

adjustments to the FFT data. This is called frequency and amplitude scaling.

What follows is extracted from the two MATLAB Tech Talks [Douglas, n.d.] and [Douglas,

n.d.].

We have already shown you [Douglas, n.d.] in Unit 6: Discrete Fourier Transforms. You may

which to watch [Douglas, n.d.] now.

Understanding Power Spectral Density and the Power SpecUnderstanding Power Spectral Density and the Power Spec……

Frequency scaling

How does relate to the frequency?

When , the equivalent frequency is 0 Hz or DC.

When the frequency is equal to the length of the time sequence.

K = N/2
K = 0 N/2 − 1

x

K

K

K = 0

K = 1
Skip to main content

https://cpjobling.github.io/eg-247-textbook/zbib.html#id20
https://cpjobling.github.io/eg-247-textbook/zbib.html#id21
https://cpjobling.github.io/eg-247-textbook/zbib.html#id21
https://cpjobling.github.io/eg-247-textbook/zbib.html#id20
https://cpjobling.github.io/eg-247-textbook/dft/index.html#unit6
https://cpjobling.github.io/eg-247-textbook/zbib.html#id21
https://www.youtube.com/watch?v=pfjiwxhqd1M

When there are two complete cycles of a sinusoid in the length of the time signal, …

and so on up to the Nyquist frequency at for a signal with an even number

of samples.

Frequency corresponding to a particular is therefore given by frequency = /(length of

the time signal) or

Bin width

The bin width is the distance (in frequency) between samples in the FFT. It is given by

To reduce the bin width, and increase the frequency resolution of the FFT, we take more

samples, or equivalently reduce the sampling period.

Example 5

Use MATLAB to find the one-sided FFT of a sinusoidal signal with frequency 3 Hz, sampled

at Hz. Present the frequency response in Hz.

Solution

Create time-domain signal

Plot the signal

K = 2
K = N/2 + 1

K K

f =
K × fs

N

fs/N

fs = 40

fs = 40; % Sampling frequency
T = 1/fs; % Sampling period
N = 40; % Length of signal
t = (0:N-1)*T'; % Time vector

xn = sin(2*pi*3*t); % 3 Hz signal

Skip to main content

FFT

plot(t, xn, '.-', 'MarkerSize', 20')
title('Signal')
xlabel('t')
ylabel('xn(t)')

Xn = fft(xn);

figure
plot(Xn)

Skip to main content

This plot doesn’t make sense as Xn is complex.

Plot absolute value

Xn = fft(xn);

figure
stem(abs(Xn));
title('Absolute Value of the FFT of xn');

Skip to main content

Now we see the peaks in the postive and negative frequency. But they are plotted at bin

number not frequency.

One-sided FFT plotted against frequency

Just plot half of the frequency by plotting absolute values only for .

K

K = 0 → N/27

Xn = fft(xn);

figure
stem(abs(Xn(1:(N/2)+1)));
title('One-Sided Absolute Value of the FFT of xn');

Skip to main content

Plot against real frequency

Xn = fft(xn);

K = 0:N/2; % K starts at 0 so the length here is N/2 + 1
freq = K*fs/N; % Cycles per length of the signal in seconds

figure
stem(freq, abs(Xn(1:(N/2)+1)));
title('One-Sided Absolute Value of the FFT of xn');
xlabel('Frequencty (Hz)')

Skip to main content

Now we can clearly see the peak at 3 Hz, but the amplitude is 20, which has no real

physical value.

we will see how to scale the amplitude of the FFT in the next section.

The actual Live Script can be obtained from aerojunkie/control-tools/FFT MATLAB App

Amplitude Scaling

If you only need to know that a peak occurs at a particular frequency then you only need to

scale the frequency. If you need to know the amplitude or power of the sinusoidal

frequencies that are present in the FFT, then we also need to scale the magnitudes.

The detail of how this is done is covered in [Douglas, n.d.] (see video in the notes) and we

will only summarize it here and give an example.

The example is available on GitHub and can be loaded into MATLAB online (we will do this

in class).

Amplitude scaling

For a double-sided FFT, the amplitudes are scaled by the number of samples, that is:

Skip to main content

https://github.com/aerojunkie/control-tools/tree/master/FFT%20MATLAB%20App
https://cpjobling.github.io/eg-247-textbook/zbib.html#id21
https://github.com/aerojunkie/control-tools/tree/master/PSD

For a single sided FFT, we use double this value and ignore the DC and Nyquist frequency.

Power

By analysis of the terms. it can be shown that the power in each term pf the single-sided

FFT is

We can thus compute the power using a similar method to that used for the amplitude.

The power is often expressed in dB so we can use the pow2db function to get power in dB.

There is also a function periodigram that will compute the power spectrum in dB from the

sampled data:

The second argument is a windowing function that is applied to the sequence to select,

and possibly prescale, the samples to reduce spectral leakage. This is explained by Brian

Douglas in the video [Douglas, n.d.] and we will not persue it further here.

Power Spectral Density

A full explanation of this is beyond the scope of this presentation (and will not be formally

assessed). View the video for details. We will demonstrate this in class.

The function periodigram also computes the power spectral density in dB from the

sampled data:

X ′[m] =
|X[m]|
N

X ′[m]m>0;m≠0;m≠N/2 =
2 |X[m]|

N

P = 2
|X[m]|2

N 2

periodogram(xn, rectwin(length(xn)), length(xn), fs, 'power')

periodogram(xn, rectwin(length(xn)), length(xn), fs, 'psd')

Skip to main content

https://uk.mathworks.com/help/signal/ref/periodogram.html
https://cpjobling.github.io/eg-247-textbook/zbib.html#id21
https://uk.mathworks.com/help/signal/ref/periodogram.html

Exercise

Redo Examples 3 and 4 as single-sided FFT plots using amplitude and frequency scaling.

Compute the power spectrum and power-spectral desity.

Summary
The inefficiency of the DFT

The FFT - a sketch of its development

An illustration of part of the FFT algorithm

FFT v DFT

Two examples

Frequency and Amplitude Scaling

Homework
Read the rest of Chapter 10 of Karris from page 10.9 and make your own notes on the

implementation of the FFT.

Coming next
Filter Design (including the use of MATLAB for this) from Chapter 11 of Karris and

other resources.

References
See Bibliography.

Footnotes

1. Note: addition of two complex numbers

so requires 2 floating-point additions; multiplication

 requires four floating-point

multiplications and two additions.

(a + jb) + (c + jd) = (a + b) + j(b + d)

(a + jb)(c + jd) = (ac − bd) + j(ad + bc)

Skip to main content

https://cpjobling.github.io/eg-247-textbook/zbib.html

In MATLAB, complex numbers are represented internally as two 64 bit floating point

operations so each complex operation is expensive both in terms of computing time

and working memory space. And the result of an N-point DFT will require twice the

memory of the original sequence, assuming that it is stored as floating point real

numbers, considerably 16 times the storage is needed if the original sequence is the

result of sampling by, say, an 8 bit ADC.

Of course, modern 64 bit mirocprocessers have hardware support for floating point

operations and so these operations take a minumum number of machine cycles. Digital

Signal Processors and Graphic Processing Units, probably have hardware support for

complex arithmetic too. Nonethess, complex arithmetic is an expensive operation, so

any simplifications we can make will be valuable.

2. Even if we do not have a real sequence, we only need to compute the first values

of the spectrum because the sequence for from are

complex conjugates, in the reverse order, of the sequence of for .

This is easy to prove by looking at the geometry of the unit circle in the z-plane.

3. If , complex operations.

4. The Inverse FFT (IFFT) follows by noting that the rotation vector used in its

computation is the complex conjugate $ $

5. Karris goes further in showing how the decomposition used to implement the FFT can

be further be understood by considering even and odd decompositions. This is also

the approach taken by Phillips et al. reproduced here. You’ll also find that most text

books on Digital Signal Processing will cover the FFT and give more or less

understandable presentations of the way the algorithm works.

6. A complex number in MATLAB is 2 floating point doubles or 128 bits. So a 2048 “bin”

FFT needs storage in RAM for approximately Mbit (kByte) of

data.

7. In MATLAB arrays start at 1 so we actually use 1 - N/2 + 1 as our range of values for K.

Solutions

Example 1

From the mathematical development and signal flow graph shown earlier:

N/2
X[k] N/2 + 1 < k ≤ N − 1

X[k] 0 ≤ k < N/2

N = 1024 N log2 N = 1024 × 10 = 10, 240

W −1
N .

22, 528 × 128 = 2.9 260

Skip to main content

Thus,

Q.E.D.

Example 2

After decomposition we have:

Hence, after 2-point FFT:

Q.E.D.

Example 3

See script fft_ex1.m.

Example 4

See script fft_ex2.m.

Xe[0] = x[0] + x[2] = 1 + 3 = 4;
Xe[1] = x[0] − x[2] = 1 − 3 = −2;
Xo[0] = x[1] + x[3] = 2 + 4 = 6;
Xo[1] = x[1] − x[3] = 2 − 4 = −2.

X[0] = Xe[0] + Xo[0] = 4 + 6 = 10,
X[1] = Xe[1] + W 1

4 Xo[1] = −2 + (−j)(−2) = −2 − j2,
X[2] = Xe[0] − Xo[0] = 4 − 6 = −2,

X[3] = Xe[1] − W 1
4 Xo[1] = −2 − (−j)(−2) = −2 + j2.

X1[0] = x[0] + x[2] = 1 + 3 = 4;
X1[1] = W 0

4 [x[1] − x[3]] = 2 + 4 = 6;
X2[0] = x[0] − x[2] = 1 − 3 = −2;

X2[1] = W 1
4 [x[1] − x[3]] = −j[2 − 4] = −j2.

X[0] = X1[0] + X1[1] = 4 + 6 = 10,
X[1] = X2[0] + X2[1] = −2 − j2,
X[2] = X1[0] − X1[1] = 4 − 6 = −2,
X[3] = X2[0] − X2[1] = −2 + j2.

Skip to main content

https://cpjobling.github.io/eg-247-textbook/dft/2/matlab/fft_ex1.m
https://cpjobling.github.io/eg-247-textbook/dft/2/matlab/fft_ex2.m

[1] The Nyquist frequency will only appear on the frequency plot if there are an even

number of samples. If that is the case, we construct the positive frquencies from

 to ceil

Previous
Unit 6.1: The Discrete Fourier
Transform

Next
Unit 7: Analogue and Digital

Filters

K = 1 N/2

https://cpjobling.github.io/eg-247-textbook/dft/1/dft.html
https://cpjobling.github.io/eg-247-textbook/filter_design/index.html

