
Exercise 1: Keyboard Interrupt
EG-252 Group Design Exercise – Microcontroller Laboratory

Dr K. S. (Joseph) Kim Dr Chris P. Jobling

September 2014

For this exercise you are provided sample keyboard interrupt programs in both C
and Assembly in the appendices; make sure that you have downloaded electronic
versions of the program from the GitHub repository before the exercise. The
program uses the interrupt generated by push buttons to switch on/off the LEDs
on the MC9S08AW60 evaluation board.

You are to carry out the following three tasks with this exercise:

• Use the sample program to practice using interrupt mechanism to interface
peripheral devices with the evaluation board.

• Answer the questions related to the CPU interrupt procedure (4 marks).
• Adjust the sample program to use the onboard switches to control the

display of your student number (6 marks).

You can view this document as a web page HTML, PDF or as a Word Document
.docx.

I. Experiment with the Sample Program
The sample program, “kbi_interrupt.c” and “kbi_interrupt.asm”, flashes on-
board LEDs upon the interrupt requests generated by the keyboard inputs, which
are SW3 and SW4 used as keyboard inputs 6 and 5, respectively. The flowchart
of the program is shown in Figure 1. Enter it or copy the electronic file onto
your CodeWarrior project, which is created targeting on HCS08 CPU family
and MC9S08AW60 MCU.

After you create your own keyboard interrupt project, you can use the evaluation
board to debug the sample keyboard interrupt program. Next we will introduce
how to use the evaluation board to configure peripheral device inputs and
generate interrupts.

A. Interrupt Generation with the Evaluation Board

The evaluation board includes four pushbutton switches (SW1-SW4) which can
provide momentary active low input for user applications. SW3 and SW4 are

1

https://github.com/cpjobling/EG-252-Resources/tree/master/Microcontroller-Interfacing/Exercises/Exercise1
exercise1.html
exercise1.docx
https://github.com/cpjobling/EG-252-Resources/blob/master/Microcontroller-Interfacing/Exercises/Exercise1/kbi_interrupt.c
https://github.com/cpjobling/EG-252-Resources/blob/master/Microcontroller-Interfacing/Exercises/Exercise1/kbi_interrupt.asm

Figure 1: Figure 1. Flowchart of the keyboard interrupt program

2

connected to MCU Port PTD3 and PTD2 respectively. If the pins of PTD3 and PTD2
are configured as KBI inputs, they will be read with “1” if the corresponding
pushbutton is not pressed and “0” if pressed. Edge events and edge/level events
can be easily generated by pressing SW3 and SW4. The KBI inputs can detect the
selected events as configured by the programmer and generate interrupt requests
if the keyboard interrupt for the inputs is enabled.

B. Experiment with the Interrupt Mechanism

Once we know how to generate keyboard interrupt events, we can use the sample
program and evaluation board kits to experiment with interrupt mechanism.

According to the interrupt procedure, CPU will leave the main program and
run the interrupt service routine (ISR) if interrupt for the keyboard module is
enabled. You can use “Single-step” or set breakpoint(s) to observe how the CPU
responds to interrupt requests. After the CPU finishes the ISR, it returns to the
main program. You can generate as many keyboard-interrupts as you like by
pushing down the switches.

You can also experiment with the detection of a rising edge and rising edge/high
level events and correspondingly generating keyboard interrupt events by config-
uring the keyboard interrupt status and control register.

II. Questions
By doing experiments with the slightly modified sample C programme, you are
required to answer the following questions.

1. Upon the generation of keyboard interrupt requests, the ISR will be run
by the CPU. Experiment with the evaluation board, record and compare
the content in the stack just before and after the CPU enters the ISR and
just before and after the CPU leaves the ISR corresponding to a keyboard
interrupt. You can get the stack pointer value from the register panel in
the real-time debugger window.

2. Explain why the stack content changes as you have observed.

Make a careful note of your observations as you will need them for the assessment
later.

III. Adjust the Sample Program to Display your Student
Numbers
All the eight KBI inputs share the KBI source. In this task you are required to
adjust the ISR shown in the Appendix, in order to determine which of the two
pushbuttons SW3 and SW4 triggered a KBI interrupt and correspondingly display
a student number of a member in your team.

3

Suppose the student numbers for your team are 43210 and 12345, respectively.
On reset, if the pushbutton SW3 is pressed down, in your ISR you should light
up the leftmost nonzero digit 4 in the first student number over LEDs (i.e., in
a binary format using four LEDs). Then the CPU should leave the ISR and
return to the main program. If SW3 is released and then pressed down again,
the next digit 3 in the first student should be displayed over LED in your ISR.
With more pressing of SW3, the following digits in the first student number are
displayed sequentially. Note that after the rightmost digit 0 was displayed over
LEDs upon the last pressing of SW3, the leftmost digit 4 will be displayed over
LEDs upon new SW3 pressing. Similar operations are performed for the second
student number 12345 if the pushbutton SW4 is pressed.

You are required to design and debug the ISR program (using the C language),
and submit the completed program as a single file named kbi_SN.c (where
SN is your student number). The assessment point on Canvas LMS is called
Assessment of Microntrollers Laboratory Exercise 1.

Appendix A
Sample Program in C

1 /* kbi_interrupt.c */
2

3 #include <hidef.h> /* for EnableInterrupts macro */
4 #include "derivative.h" /* include peripheral declarations */
5 #define VNkeyboard 22 /* Interrupt vector for Keyboard */
6

7 typedef unsigned char muint8;
8 typedef unsigned short muint16;
9 typedef unsigned long muint32;

10

11 typedef char mint8;
12 typedef short mint16;
13 typedef long mint32;
14

15 muint8 LED_onseq;
16

17 void main(void)
18 {
19

20 SOPT = 0x00; /* disable COP */
21

22 /* begin LED/switch test */
23

24 PTDPE = 0xFF; /* enable port D pullups for push button switch interrupt */
25

26 /* Init_GPIO init code */

4

27 PTFDD = 0xFF; /* set port F as outputs for LED operation */
28 LED_onseq = 0x0F; /* initialize LED_onseq */
29

30 //***
31 //* KBI1PE7 * KBI1PE6 * KBI1PE5 * KBI1PE4 * KBI1PE3 * KBI1PE2 * KBI1PE1 * KBI1PE0 *
32 //***
33 // KBI1PE register; each bit selects the corresponding keyboard interrupt pin.
34

35 //***
36 //* KBEDG7 * KBEDG6 * KBEDG5 * KBEDG4 * KBF * KBACK * KBIE * KBIMOD *
37 //***
38 // KBI1SC register; top four bits 0 = falling edge 1 = rising edge of corresponding
39 // pins KBEDG7 to 4. KBF keyboard interrupt flag, KBACK acknowledges interrupt flag.
40 // KBIE turns on the keyboard interrupt system, KBIMOD 0 = edge detection.
41

42 KBI1SC_KBIE = 0; //Make sure interrupt is OFF
43 KBI1PE = 0b01100000; //Turn on interrupts for pins 5 and 6 only
44 KBI1SC_KBIMOD = 0; //Make sure we are on edge operation
45 KBI1SC_KBACK = 1; //Clear any possible pending interrupts
46 KBI1SC_KBIE = 1; //Turn on selected keyboard interrupts
47

48 EnableInterrupts; // enable interrupts globally ("big switch")
49

50 for(;;)
51 {
52

53 } /* loop forever */
54 /* make sure that you never leave main! */
55 }
56

57 // What follows is the interrupt service routine, which is called if either of the
58 // selected keyboard interrupts occurs on pins 5 and 6. However, Port D is tested
59 // and the LED toggle only happens if SW3 is pressed. (KBI 6, Port D3).
60

61 interrupt VNkeyboard void intKBI_SW()
62 {
63 KBI1SC_KBACK = 1; // acknowledge interrupt
64 // this is the business of the interrupt
65 if (PTDD_PTDD3 == 0)
66 {
67 PTFD = LED_onseq;
68 LED_onseq ˆ= 0xFF; // toggle LED_onseq bits
69 }
70 // do nothing if not keyboard interrupt VNkeyboard
71 }

5

View on GitHub

Appendix B
Sample Program in Assembly

1 ;***
2 ;* kbi_adc.asm *
3 ;* *
4 ;* MC9S08AW60 Evaluation board keyboard interrupt example *
5 ;* - Switch SW3 onboard connected to Port D bit 3, KBI pin6; *
6 ;* - Switch SW4 onboard connected to Port D bit 2, KBI pin5 *
7 ;* *
8 <<<<<<< HEAD
9 ;* Function: *

10 ;* On reset, all LEDs are off. When either SW3 or SW4 are pressed, *
11 ;* then the ADC channel 8 is read and sent to the LEDs. *
12 =======
13 ;* Function: *
14 ;* on reset all LEDs will light on. If SW3 or SW4 pressed, *
15 ;* an interrupt is generated, which set LEDs 0:3 to light on. *
16 ;* More interrupts are generated if SW3 or SW4 are pressed. *
17 >>>>>>> master
18 ;***
19

20 INCLUDE 'derivative.inc' ; Include derivative-specific definitions
21

22 FLASH EQU $2000
23 RAM EQU $0070
24 WATCH EQU $1802
25

26 ConvComp EQU %10000000 ;Mask for Conversion Complete flag
27

28 ORG RAM
29 LED_on DS.B 1 ; Define a variable VAR_D with a size of 1 byte
30

31 ;Start program after reset
32

33 ORG FLASH
34 START_UP
35 LDA #$00
36 STA WATCH ; Turn off the watchdog timer
37

38 ;Init_GPIO init code
39 LDA #$FF
40 STA PTFDD

6

https://github.com/cpjobling/EG-252-Resources/blob/master/Microcontroller-Interfacing/Exercises/Exercise1/kbi_interrupt.c

41 MOV #$0F, LED_on ; Initialize VAR_D, used to control the LEDs
42 LDA #$FF
43 STA PTDPE ; Port D is enabled with pull-up
44 RSP ; Reset stack pointer to $0080
45

46 ;Enable interrupt for Keyboard input
47 LDA #$60
48 STA KBI1PE ; KBI1PE: enable KBI function for pins 5 and 6 only
49 BSET $02, KBI1SC ; KBI1SC: KBACK=1, to clear KBI flag
50 BSET $01, KBI1SC ; KBI1SC: KBIE=1, enable KBI
51

52 CLI ; Enable interrupt
53

54 MAINLOOP
55 LDA LED_on ; Simple loop with "dummy" operation
56 BRA MAINLOOP
57

58 ;Interrupt service routine for a keyboard interrupt generated upon the press of a pushbutton
59 ;with a falling edge (transition from high logic level "1" to low logic level "0")
60 LED_SWITCH
61 BSET $02, KBI1SC ; Clear KBI flag
62 LDA #8 ; Select analogue input 8 (the blue potentiometer).
63 STA ADC1SC1 ; ADC conversion will start after a number is written to ADC1SC1 register.
64 ADCLOOP
65 LDA ADC1SC1 ;
66 AND #ConvComp ; Check the COCO bit (conversion complete flag).
67 BEQ ADCLOOP ; if not complete, wait in the ADC loop.
68 LDA ADC1RL ; if complete, read the ADC outcome (digital value) from the register.
69 STA PTFD ; display over LED bar
70 RTI
71

72 ;INT_VECTOR
73 ORG $FFD2
74 DC.W LED_SWITCH
75

76 ORG $FFFE
77 DC.W START_UP
78

79

80

81

82

View on GitHub

7

https://github.com/cpjobling/EG-252-Resources/blob/master/Microcontroller-Interfacing/Exercises/Exercise1/kbi_interrupt.asm

	I. Experiment with the Sample Program
	A. Interrupt Generation with the Evaluation Board
	B. Experiment with the Interrupt Mechanism

	II. Questions
	III. Adjust the Sample Program to Display your Student Numbers
	Appendix A
	Sample Program in C

	Appendix B
	Sample Program in Assembly

