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In [ ]:

cd matlab 
pwd 

Models of Discrete-Time Systems

Scope and Background Reading
This we will explore digital systems and learn more about the z-transfer function model.

The material in this presentation and notes is based on Chapter 9 (Starting at Section 9.7) of Steven T.
Karris, Signals and Systems: with Matlab Computation and Simulink Modelling, 5th Edition.
(http://site.ebrary.com/lib/swansea/docDetail.action?docID=10547416) from the Required Reading List. I
have skipped the section on digital state-space models.

Agenda

Discrete Time Systems

Transfer Functions in the Z-Domain

Modelling digital systems in Matlab/Simulink

Continuous System Equivalents

Example: Digital Butterworth Filter

http://site.ebrary.com/lib/swansea/docDetail.action?docID=10547416
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Discrete Time Systems
In the lecture that introduced the z-transform we talked about the representation of a discrete-time (DT)
system by the model shown below:

In this session, we want to explore the contents of the central block.

DT System as a Sequence Processor
As noted in the previous slide, the discrete time system (DTS) `takes as an input the sequence 
 which in a physical signal would be obtained by sampling the continuous time signal  using an

analogue to digital converter (ADC).

It produces another sequence  by processing the input sequence in some way.

The output sequence is converted into an analogue signal  by a digital to analogue converter
(DAC).

What is the nature of the DTS?
The discrete time system (DTS) is a block that converts a sequence  into another sequence 

The transformation will be a difference equation 

[n]xd
1 x(t)

[n]yd

y(t)

[n]xd
[n]yd

h[n]
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By analogy with CT systems,  is the impulse response of the DTS, and  can be obtained by
convolving  with  so:

Taking the z-transform of  we get , and from the transform properties, convolution of the
signal  by system  will be multiplication of the z-transforms:

So, what does  and therefore  look like?

Transfer Functions in the Z-Domain
Let us assume that the sequence transformation is a difference equation of the form :

Take Z-Transform of both sides
From the z-transform properties

so....

Gather terms

from which ...

Define transfer function
We define the discrete time transfer function  so...

h[n] y[n]

h[n] [n]xd

[n] = h[n] ∗ [n]yd xd

h[n] H(z)

[n]xd h[n]

(z) = H(z) (z)Yd Xd

h[n] H(z)

2

y[n] + y[n − 1] + y[n − 2] +⋯ + y[n − k]a1 a2 ak

= x[n] + u[n − 1] + u[n − 2] +⋯ + u[n − k]b0 b1 b2 bk

f [n − m] ⇔ F(z)z−m

Y(z) + Y(z) + Y(z) +⋯ + Y(z) =. . .a1 z
−1 a2 z

−2 akz
−k

U(z) + U(z) + U(z) +⋯ + U(z)b0 b1 z
−1 b2 z

−2 bkz
−k

(1 + + +⋯ ) Y(z) =a1 z
−1 a2 z
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−k

( + + +⋯ )U(z)b0 b1 z
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−2 bkz
−k
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+ + +⋯b0 b1 z

−1 b2 z
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H(z) = =
Y(z)
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+ + +⋯b0 b1 z
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1 + + +⋯a1 z
−1 a2 z
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... or more conventionally :

DT impulse response
The discrete-time impulse reponse  is the response of the DT system to the input 

Last week we showed that  was defined by the transform pair

so

Example 5
Karris Example 9.10:

The difference equation describing the input-output relationship of a DT system with zero initial conditions,
is:

Compute:

1. The transfer function 
2. The DT impulse response 
3. The response  when the input  is the DT unit step 

5.1. The transfer function

3

H(z) =
+ + +⋯ z +b0 z

k b1 z
k−1 b2 z

k−2 bk−1 bk

+ + +⋯ z +zk a1 z
k−1 a2 z

k−2 ak−1 ak

h[n] x[n] = δ[n]

 {δ[n]}

δ[n] ⇔ 1

h[n] = {H(z).1} = {H(z)}
−1


−1

y[n] − 0.5y[n − 1] + 0.125y[n − 2] = x[n] + x[n − 1]

H(z)

h[n]

y[n] x[n] [n]u0

H(z) = =. . . ?
Y(z)

U(z)
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5.2. The DT impulse response
Start with:

=
H(z)

z

z − 1

+ 0.5z + 0.125z2
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Matlab Solution
See dtm_ex1_2.mlx (https://github.com/cpjobling/EG-247-
Resources/blob/master/week9/matlab/dtm_ex1_2.mlx). (Also available as dtm_ex1_2.m
(https://github.com/cpjobling/EG-247-Resources/blob/master/week9/matlab/dtm_ex1_2.m).)

The difference equation describing the input-output relationship of the DT system with zero initial conditions,
is:

Transfer function

Numerator 

In [24]:

Nz = [0 1 1]; 

Denominator 

In [25]:

Dz = [1 -0.5 0.125]; 

Poles and residues

In [26]:

[r,p,k] = residue(Nz,Dz) 

Impulse Response

y[n] − 0.5y[n − 1] + 0.125y[n − 2] = x[n] + x[n − 1]

z + 1

− 0.5z + 0.125z2

r = 
 
   0.5000 - 2.5000i 
   0.5000 + 2.5000i 
 
 
p = 
 
   0.2500 + 0.2500i 
   0.2500 - 0.2500i 
 
 
k = 
 
     [] 
 

https://github.com/cpjobling/EG-247-Resources/blob/master/week9/matlab/dtm_ex1_2.mlx
https://github.com/cpjobling/EG-247-Resources/blob/master/week9/matlab/dtm_ex1_2.m
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In [27]:

Hz = tf(Nz,Dz,1) 
hn = impulse(Hz, 15); 

Plot the response

In [28]:

stem([0:15], hn) 
grid 
title('Example 5 - Part 2') 
xlabel('n') 
ylabel('Impulse response h[n]') 

Response as stepwise continuous y(t)

Hz = 
  
         z + 1 
  ------------------- 
  z^2 - 0.5 z + 0.125 
  
Sample time: 1 seconds 
Discrete-time transfer function. 
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In [29]:

impulse(Hz,15) 
grid 
title('Example 5 - Part 2 - As Analogue Signal') 
xlabel('nTs [s]') 
ylabel('Impulse response h(t)') 

5.3. The DT step response

Solved by inverse Z-transform.

Y(z) = H(z)X(z)

[n] ⇔u0
z

z − 1

Y(z) = H(z) (z)U0 =

=

.
+zz2

+0.5z+0.125z2

z

z−1

z( +z)z2

( +0.5z+0.125)(z−1)z2

=
Y(z)

z

+ zz2

( + 0.5z + 0.125)(z − 1)z2
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Matlab Solution
See dtm_ex1_3.mlx (https://github.com/cpjobling/EG-247-
Resources/blob/master/week9/matlab/dtm_ex1_3.mlx). (Also available as dtm_ex1_3.m
(https://github.com/cpjobling/EG-247-Resources/blob/master/week9/matlab/dtm_ex1_3.m).)

In [30]:

open dtm_ex1_3 

https://github.com/cpjobling/EG-247-Resources/blob/master/week9/matlab/dtm_ex1_3.mlx
https://github.com/cpjobling/EG-247-Resources/blob/master/week9/matlab/dtm_ex1_3.m
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Results

Modelling DT systems in Matlab and Simulink

Matlab
Code extracted from dtm_ex1_3.m (https://github.com/cpjobling/EG-247-
Resources/blob/master/week9/matlab/dtm_ex1_3.m):

https://github.com/cpjobling/EG-247-Resources/blob/master/week9/matlab/dtm_ex1_3.m
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In [31]:

Ts = 1; 
z = tf('z', Ts) 

In [32]:

Hz = (z^2 + z)/(z^2 - 0.5 * z + 0.125) 

z = 
  
  z 
  
Sample time: 1 seconds 
Discrete-time transfer function. 
 

Hz = 
  
        z^2 + z 
  ------------------- 
  z^2 - 0.5 z + 0.125 
  
Sample time: 1 seconds 
Discrete-time transfer function. 
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In [33]:

step(Hz) 
grid 
title('Example 1 - Part 3 - As Analogue Signal') 
xlabel('nTs [s]') 
ylabel('Step response y(t)') 
axis([0,15,0,3.5]) 

Simulink Model
See dtm.slx (https://github.com/cpjobling/EG-247-Resources/blob/master/week9/matlab/dtm.slx):

In [34]:

dtm 

https://github.com/cpjobling/EG-247-Resources/blob/master/week9/matlab/dtm.slx
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Results

Converting Continuous Time Systems to Discrete Time
Systems

In analogue electronics, to implement a filter we would need to resort to op-amp circuits with
resistors, capacitors and inductors acting as energy dissipation, storage and release devices.
In modern digital electronics, it is often more convenient to take the original transfer function 
and produce an equivalent .
We can then determine a difference equation that will respresent  and implement this as
computer algorithm.
Simple storage of past values in memory becomes the repository of past state rather than the
integrators and derivative circuits that are needed in the analogue world.
To achieve this, all we need is to be able to do is to sample and process the signals quickly enough
to avoid violating Nyquist-Shannon's sampling theorem.

H(s)

H(z)

h[n]
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Continuous System Equivalents
There is no digital system that uniquely represents a continuous system
This is because as we are sampling, we only have knowledge of signals being processed at the
sampling instants, and need to reconstruct the inter-sample behaviour.
In practice, only a small number of transformations are used.
The derivation of these is beyond the scope of this module, but we'll mention the ones that Matlab
provides in a function called c2d

Matlab c2d function
Let's see what the help function says:
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In [35]:

help c2d 

In [36]:

doc c2d 

C2D  Converts continuous-time dynamic system to discrete time. 
 
   SYSD = C2D(SYSC,TS,METHOD) computes a discrete-time model SYSD w
ith  
   sample time TS that approximates the continuous-time model SYSC. 
   The string METHOD selects the discretization method among the fo
llowing: 
      'zoh'       Zero-order hold on the inputs 
      'foh'       Linear interpolation of inputs 
      'impulse'   Impulse-invariant discretization 
      'tustin'    Bilinear (Tustin) approximation. 
      'matched'   Matched pole-zero method (for SISO systems only). 
   The default is 'zoh' when METHOD is omitted. The sample time TS 
should  
   be specified in the time units of SYSC (see "TimeUnit" propert
y). 
 
   C2D(SYSC,TS,OPTIONS) gives access to additional discretization o
ptions.  
   Use C2DOPTIONS to create and configure the option set OPTIONS. F
or  
   example, you can specify a prewarping frequency for the Tustin m
ethod by: 
      opt = c2dOptions('Method','tustin','PrewarpFrequency',.5); 
      sysd = c2d(sysc,.1,opt); 
 
   For state-space models, 
      [SYSD,G] = C2D(SYSC,Ts,METHOD) 
   also returns the matrix G mapping the states xc(t) of SYSC to th
e states  
   xd[k] of SYSD: 
      xd[k] = G * [xc(k*Ts) ; u[k]] 
   Given an initial condition x0 for SYSC and an initial input valu
e u0=u(0),  
   the equivalent initial condition for SYSD is (assuming u(t)=0 fo
r t<0): 
      xd[0] = G * [x0;u0] . 
 
   See also C2DOPTIONS, D2C, D2D, DYNAMICSYSTEM. 

   Reference page in Doc Center 
      doc c2d 

   Other functions named c2d 

      DynamicSystem/c2d 
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Example 6
Design a 2nd-order butterworth low-pass anti-aliasing filter with transfer function  for use in
sampling music.
The cut-off frequency  kHz and the filter should have an attenuation of at least  dB in
the stop band.
Choose a suitable sampling frequency for the audio signal and give the transfer function  and
an algorithm to implement 

Solution
See digit_butter.m (https://github.com/cpjobling/EG-247-
Resources/blob/master/week9/matlab/digit_butter.m).

First determine the cut-off frequency 

In [37]:

wc = 2*pi*20e3 

From the lecture on filters, we know the 2nd-order butterworth filter has transfer function:

Substituting for  this is ...?

In [38]:

Hs = tf(wc^2,[1 wc*sqrt(2), wc^2]) 

H(s)

= 20ωc −80

H(z)

h[n]

ωc

= 2π = 2 × π × 20 × rad/sωc fc 103

= 125.66 × rad/sωc 103

H(s) = =
Y(s)

U(s)

ω2
c

+ s +s2 ωc 2‾√ ω2
c

= 125.6637 ×ωc 103

H(s) =
15.79 × 109

+ 177.7 × s + 15.79 ×s2 103 109

wc = 

  1.2566e+05 

Hs = 
  
           1.579e10 
  --------------------------- 
  s^2 + 1.777e05 s + 1.579e10 
  
Continuous-time transfer function. 
 

https://github.com/cpjobling/EG-247-Resources/blob/master/week9/matlab/digit_butter.m
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Bode plot
Matlab:

In [39]:

bode(Hs,{1e4,1e8}) 
grid 

Sampling Frequency
From the bode diagram, the frequency at which  is  dB is approx  rad/s.

To avoid aliasing, we should choose a sampling frequency twice this = ?

 rad/s.

In [40]:

ws = 2* 12.6e6 

So

 rad/s.

|H(jω)| −80 12.6 × 106

= 2 × 12.6 ×ωs 106

= 25.2 ×ωs 106

ws = 

   25200000 
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Sampling frequency ( ) in Hz = ?

In [41]:

fs = ws/(2*pi) 

Sampling time 

In [42]:

Ts = 1/fs 

Digital Butterworth
zero-order-hold equivalent

In [43]:

Hz = c2d(Hs, Ts) 

Step response

fs

= /(2π) Mhzfs ωs

= 40.11 Mhzfs

=?Ts

= 1/f s sTs

= 1/ ≈ 0.25 μsTs fs

fs = 
 
   4.0107e+06 
 

Ts = 
 
   2.4933e-07 
 

Hz = 
  
  0.0004836 z + 0.0004765 
  ----------------------- 
  z^2 - 1.956 z + 0.9567 
  
Sample time: 2.4933e-07 seconds 
Discrete-time transfer function. 
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In [44]:

step(Hz) 

Algorithm
From previous result:

Dividing top and bottom by  ...

expanding out ...

Inverse z-transform gives ...

H(z) = =
Y(z)

U(z)

486.6 × z + 476.5 ×10−6 10−6

− 1.956z + 0.9567z2

z2

H(z) = =
Y(z)

U(z)

486.6 × + 476.5 ×10−6z−1 10−6z−2

1 − 1.956 + 0.9567z−1 z−2

Y(z) − 1.956 Y(z) + 0.9567 Y(z) =z−1 z−2

486.6 × U(z) + 476.5 × U(z)10−6z−1 10−6z−2

y[n] − 1.956y[n − 1] + 0.9567y[n − 2] =

486.6 × u[n − 1] + 476.5 × u[n − 2]10−6 10−6
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in algorithmic form (compute  from past values of  and ) ...

Convert to code
To implement:

/* Initialize */ 
Ts = 2.4933e-07; /* more probably some fraction of clock speed */ 
ynm1 = 0; ynm2 = 0; unm1 = 0; unm2 = 0; 
while (true) { 
   un = read_adc; 
   yn = 1.956*ynm1 - 0.9567*ynm2 + 486.6e-6*unm1 + 476.5e-6*unm2; 
   write_dac(yn); 
   /* store past values */ 
   ynm2 = ynm1; ynm1 = yn; 
   unm2 = unm1; unm1 = un; 
   wait(Ts); 
}

Comments
PC soundcards can sample audio at 44.1 kHz so this implies that the anti-aliasing filter is much sharper than
this one as  kHz.

You might wish to find out what order butterworth filter would be needed to have  kHz and  of
22.05 kHz.

Summary
Discrete Time Systems
Transfer Functions in the Z-Domain
Modelling digital systems in Matlab/Simulink
Continuous System Equivalents
Example: Digital Butterworth Filter

Solutions to Example 5

y[n] u y

y[n] = 1.956y[n − 1] − 0.9567y[n − 2] + 486.6 × u[n − 1]+. . .10
−6

476.5 × u[n − 2]10
−6

y[n] = 1.956y[n − 1] − 0.9567y[n − 2] + 486.6 × u[n − 1] + 476.5 × u[n − 2]10−6 10−6

/2 = 22.05fs

= 20fc fstop
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Solution to 5.1.
The transfer function is

Solution to 5.2.
The DT impulse response:

Solution to 5.3.
Step response:

H(z) = =
Y(z)

X(z)

+ zz2

− 0.5z + 0.125z2

h[n] = (cos( ) + 5 sin( ))( )
2‾√
4

n
nπ

4

nπ

4

y[n] = (3.2 − (2.2 cos( ) + 0.6 sin( ))) [n]( )
2‾√
4

n
nπ

4

nπ

4
u0


