This session introduces the z-transform which is used in the analysis of discrete time systems. As for the Fourier and Laplace transforms, we present the definition, define the properties and give some applications of the use of the z-transform in the analysis of signals that are represented as sequences and systems represented by difference equations.
The material in this presentation and notes is based on Chapter 10 of Steven T. Karris, Signals and Systems: with Matlab Computation and Simulink Modelling, 5th Edition from the Required Reading List. Additional coverage is to be found in Chapter 13 of Benoit Boulet, Fundamentals of Signals and Systems from the Recommended Reading List.
In the remainder of this course we turn our attention to how we model and analyse the behaviour of the central block in this picture.
$$\mathcal{Z}\left\{f[n]\right\} = F(z) = \sum_{n=0}^{\infty} f[n]z^{-n}$$
$${{\cal Z}^{ - 1}}\left\{ {F(z)} \right\} = f[n] = \frac{1}{{2\pi j}}\oint\limits_{} {F(z){z^{k - 1}}\,dz}$$
In the last lecture we showed that sampling could be represented as the multiplication of a CT signal by a periodic train of impulses:
$$x_s(t) = x(t)\sum_{n=0}^{\infty}\delta(t-nT_s)$$
By the sampling property of $\delta(t)$
$$x_s(t) = \sum_{n=0}^{\infty}x(nT_s)\delta(t-nT_s)$$
Using the Laplace transform pairs $\delta(t) \Leftrightarrow 1$ and $\delta(t-T) \Leftrightarrow e^{-sT}$ we obtain:
$$X_s(t) = \mathcal{L}\left\{\sum_{n=0}^{\infty}x(nT_s)\delta(t-nT_s)\right\} = \sum_{n=0}^{\infty}x(nT_s)e^{-nsT_s}$$
By substitution of $z = e^{sT_s}$ and representing samples $x(nT_s)$ as sequence $x[n]$:
$$X(z) = \sum_{n=0}^{\infty}x[n]z^{-n}$$
Property | Discrete Time Domain | $\mathcal{Z}$ Transform | |
---|---|---|---|
1 | Linearity | $af_1[n]+bf_2[n]+\cdots$ | $aF_1(z)+bF_2(z)+\cdots$ |
2 | Shift of $x[n]u_0[n]$ | $f[n-m]u_0[n-m]$ | $z^{-m}F(z)$ |
3 | Left shift | $f[n-m]$ | $$z^{-m}F(z)+\sum_{n=0}^{m-1}f[n-m]z^{-n}$$ |
4 | Right shift | $f[n+m]$ | $$z^{m}F(z)+\sum_{n=-m}^{-1}f[n+m]z^{-n}$$ |
5 | Multiplication by $a^n$ | $a^nf[n]$ | $$F\left(\frac{z}{a}\right)$$ |
6 | Multiplication by $e^{-nsT_s}$ | $e^{-nsT_s}f[n]$ | $$F\left(e^{sT_s}z\right)$$ |
7 | Multiplication by $n$ | $nf[n]$ | $$-z\frac{d}{dz}F(z)$$ |
8 | Multiplication by $n^2$ | $n^2f[n]$ | $$-z\frac{d}{dz}F(z)+z^2\frac{d^2}{dz^2}F(z)$$ |
9 | Summation in time | $$\sum_{m=0}^{n}f[m]$$ | $$\frac{z}{z-1}F(z)$$ |
10 | Time convolution | $f_1[n]*f_2[n]$ | $F_1(z)F_2(z)$ |
11 | Frequency convolution | $f_1[n]f_2[n]$ | $$\frac{1}{{j2\pi }}\oint {x{F_1}(v){F_2}\left( {\frac{z}{v}} \right)} {v^{ - 1}}dv$$ |
12 | Initial value theorem | $$f[0]=\lim_{z\to\infty}F(z)$$ | |
13 | Final value theorem | $$\lim_{n\to\infty}f[n]=\lim_{z\to 1}(z-1)F(z)$$ |
For proofs refer to Section 9.2 of Karris.
$$f[n] = \left\{ {\begin{array}{*{20}{c}} 0&{n = - 1, - 2, - 3, \ldots }\\ {{a^n}}&{n = 0,1,2,3, \ldots } \end{array}} \right.$$
$$F(z) = \sum_{n=0}^{\infty}f[n]z^{-n} = \sum_{n=0}^{\infty}a^n z^{-n} = \sum_{n=0}^{\infty}\left(az^{-1}\right)^n$$
After some analysis1, this can be shown to have a closed-form expression2
$$F(z) = \frac{1}{1-az^{-1}}=\frac{z}{z -a}$$
$$\delta [n] = \left\{ {\begin{array}{*{20}{c}} 1&{n = 0}\\ 0&{{\rm{otherwise}}} \end{array}} \right.$$
$$\mathcal{Z}\left\{\delta [n]\right\} = \Delta(z) = \sum_{n=0}^{\infty}\delta[n]z^{-n} = 1 + \sum_{n=1}^{\infty}0z^{-n} =1$$
$$\delta [n] \Leftrightarrow 1$$
$${u_0}[n] = {\rm{ }}\left\{ {\begin{array}{*{20}{c}} 0&{n < 0}\\ 1&{n \ge 0} \end{array}} \right.$$
$$\mathcal{Z}\left\{u_0 [n]\right\} U_0(z) = \sum_{n=0}^{\infty}u_0[n]z^{-n} =\sum_{n=0}^{\infty}z^{-n}$$
This is a special case of the geometric sequence with $a = 1$ so
$$U_0(z) = \frac{1}{1-z^{-1}} = \frac{z}{z - 1}$$
Region of convergence is $|z| > 1$
$$f[n] = e^{naT_s}{u_0}[n]$$
$$F(z) = \sum_{n=0}^{\infty}e^{-nasT_s}z^{-n} =1+e^{-aT_s}z^{-1}+e^{-2aT_s}z^{-2}+e^{-a3T_s}z^{-3}+\cdots$$
This is a geometric sequence with $a = e^{-aT_s}$, so
$$\mathcal{Z}\left\{e^{naT_s}{u_0}[n]\right\} = \frac{1}{1-e^{-aT_s}z^{-1}} = \frac{z}{z-e^{-aT_s}}$$
Region of convergence is $|e^{-aT_s}z^{-1}| < 1$
$$f[n] = nu_0[n]$$
$$\mathcal{Z}\left\{nu_0[n]\right\}=\sum_{n=0}^{\infty} nz^{-n} = 0 + z^{-1}+2z^{-2}+3z^{-3}+\cdots$$
We recognize this as a signal $u_0[n]$ multiplied by $n$ for which we have the property $$nf[n] \Leftrightarrow -z\frac{d}{dz}F(z)$$
After applying the property and some manipulation, we arrive at:
$$nu_0[n] \Leftrightarrow \frac{z}{(z-1)^2}$$
As usual, we can rely on this and similar analysis to have been tabulated for us and in practice we can rely on tables of transform pairs, such as this one.
f[n] | F(z) | |
---|---|---|
1 | $$\delta[n]$$ | $$1$$ |
2 | $$\delta[n-m]$$ | $$z^{-m}$$ |
3 | $$a^nu_0[n]$$ | $$\frac{z}{z-a}\;|z| > a$$ |
4 | $$u_0[n]$$ | $$\frac{z}{z-1}\;|z| > 1$$ |
5 | $$(e^{-anT_s})u_0[n]$$ | $$\frac{z}{z-e^{-aT_s}}\;|e^{-aT_s}z^{-1}| < 1$$ |
6 | $$(\cos naT_s)u_0[n]$$ | $$\frac{z^2 - z\cos aT_s}{z^2 -2z\cos aT_s + 1}\;|z| > 1$$ |
7 | $$(\sin naT_s)u_0[n]$$ | $$\frac{z\sin aT_s}{z^2 -2z\cos aT_s + 1}\;|z| > 1$$ |
8 | $$(a^n\cos naT_s)u_0[n]$$ | $$\frac{z^2 - az\cos aT_s}{z^2 -2az\cos aT_s + a^2}\;|z| > 1$$ |
9 | $$(a^n\sin naT_s)u_0[n]$$ | $$\frac{az\sin aT_s}{z^2 -2az\cos aT_s + a^2}\;|z| > 1$$ |
10 | $$u_0[n]-u_0[n-m]$$ | $$\frac{z^m-1}{z^{m-1}(z-1)}$$ |
11 | $$nu_0[n]$$ | $$\frac{z}{(z-1)^2}$$ |
12 | $$n^2u_0[n]$$ | $$\frac{z(z+1)}{(z-1)^3}$$ |
13 | $$[n+1]u_0[n]$$ | $$\frac{z^2}{(z-1)^2}$$ |
14 | $$a^n n u_0[n]$$ | $$\frac{az}{(z-a)^2}$$ |
15 | $$a^n n^2 u_0[n]$$ | $$\frac{az(z+a)}{(z-a)^3}$$ |
16 | $$a^n n[n+1] u_0[n]$$ | $$\frac{2az^2}{(z-a)^3}$$ |
Given that we can represent a sampled signal in the complex frequency domain as the infinite sum of each sequence value delayed by an integer multiple of the sampling time:
$$F(s) = \sum_{n=0}^{\infty}f[n]e^{-nsT_s}$$
And by definition, the z-transform of such a sequence is:
$$F(z) = \sum_{n=0}^{\infty}f[n]z^{-n}$$
It follows that
$$z = e^{sT_s}$$
And
$$s = \frac{1}{T_s}\ln z$$
Since $s$ and $z$ are both complex variables, $z=e^{sT_s}$ is a mapping from the $s$-domain to the $z$-domain and $z = \ln z/T_s$ is a mapping from the $z$ to $s$-domain.
$$z = e^{\sigma T_s + j\omega T_s} = e^{\sigma T_s}e^{j\omega T_s} = |z|e^{j\theta}$$
where $|z| = e^{\sigma Ts}$ and $\theta = \omega T_s$.
Now, since $T_s = 1/f_s$ then $\omega_s = 2\pi/f_s$ or $f_s = \omega_s/(2\pi)$ and $T_s = 2\pi/\omega_s$
We let
$$\theta = \omega T_s = \omega\frac{2\pi}{\omega_s} = 2\pi\frac{\omega}{\omega_s}$$
Hence by substitution:
$$z = e^{\sigma t}e^{j2\pi\omega/\omega_s}$$
The quantity $e^{j2\pi\omega/\omega_s}$ defines a unit-circle in the $z$-plane centred at the origin.
And of course the term $\sigma$ represents the (stability) boundary between the left- and right-half planes of the $s$-plane.
What are the consequences of this?
As a consequence of the result for Case III above, we can explore how frequencies (that is is values of $s=\pm j\omega$) map onto the $z$-plane.
We already know that these frequencies will map onto the unit circle and by $\theta = 2\pi\omega/\omega_s$ the angles are related to the sampling frequency.
Let's see how
$\omega$ [radians/sec] | $|z|$ | $\theta$ [radians] |
0 | 1 | 0 |
$\omega_s/8$ | 1 | $\pi/4$ |
$\omega_s/4$ | 1 | $\pi/2$ |
$3\omega_s/8$ | 1 | $3\pi/4$ |
$\omega_s/2$ | 1 | $\pi$ |
$5\omega_s/8$ | 1 | $5\pi/4$ |
$3\omega_s/4$ | 1 | $3\pi/2$ |
$7\omega_s/8$ | 1 | $7\pi/4$ |
$\omega_s$ | 1 | $2\pi$ |
There is no unique mapping of $z$ to $s$ since
$$s = \frac{1}{T_s} \ln z$$
but for a complex variable
$$\ln z = \ln z \pm j2n\pi$$
This is in agreement with the theoretical idea that in the frequency domain, sampling creates an infinite number of spectra, each of which is centred around $\pm n\omega_s$.
This is another way of looking at aliasing.
Next session
Problems 1 to 3 in Section 9.10 Exercises of Karris explore the z-Transform