
16/04/2018 z-transform

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week8/z-transform.ipynb?download=false 1/13

Discrete-Time Systems and the Z-Transform

Scope and Background Reading
This session introduces the z-transform which is used in the analysis of discrete time systems. As for the
Fourier and Laplace transforms, we present the definition, define the properties and give some applications
of the use of the z-transform in the analysis of signals that are represented as sequences and systems
represented by difference equations.

The material in this presentation and notes is based on Chapter 10 of Steven T. Karris, Signals and Systems:
with Matlab Computation and Simulink Modelling, 5th Edition
(http://site.ebrary.com/lib/swansea/docDetail.action?docID=10547416) from the Required Reading List.
Additional coverage is to be found in Chapter 13 of Benoit Boulet, Fundamentals of Signals and Systems
(http://site.ebrary.com/lib/swansea/docDetail.action?docID=10228195) from the Recommended Reading
List.
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In the remainder of this course we turn our attention to how we model and analyse the behaviour of the
central block in this picture.

Nature of the signals

The signals we process in discrete time systems are sequences of values  where  is an index.

A sequence can be obtained in real-time, e.g. as the output of a ADC, or can be stored in digital memory;
processed and re-stored; or processed and output in real-time, for example in digital music.

Nature of the systems
The input to a discrete time system is a squences of values 
The output is also a sequence 
The block represents the operations that convert  into .
This processing takes the form of a difference equation
This is analogous to the representation of continuous-time operations by differential equations.

Transfer function model of a DT system
In CT systems we use the Laplace transform to simplify the analysis of the differential equations
In DT systems the z-Transform allows us to simplify the analysis of the difference equations
In CT systems application of the Laplace transform allows us to represent systems as transfer
functions and solve convolution problems by multiplication
The z-transform provides analogous (https://www.google.co.uk/search?q=define:analogous) tools
for the analysis of DT systems.

The Z-Transform

x[n] n

x[n]

y[n]

x[n] y[n]

 {f [n]} = F(z) = f [n]∑
n=0

∞

z−n

https://www.google.co.uk/search?q=define:analogous
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Sampling and the Z-Transform
In the last lecture we showed that sampling could be represented as the multiplication of a CT signal by a
periodic train of impulses:

By the sampling property of 

Using the Laplace transform pairs  and  we obtain:

By substitution of  and representing samples  as sequence :

{F(z)} = f [n] = F(z) dz
−1 1

2πj ∮ zk−1

(t) = x(t) δ(t − n )xs ∑
n=0

∞

Ts

δ(t)

(t) = x(n )δ(t − n )xs ∑
n=0

∞

Ts Ts

δ(t) ⇔ 1 δ(t − T) ⇔ e−sT

(t) = { x(n )δ(t − n )} = x(n )Xs ∑
n=0

∞

Ts Ts ∑
n=0

∞

Ts e−nsTs

z = esTs x(n )Ts x[n]

X(z) = x[n]∑
n=0

∞

z−n



16/04/2018 z-transform

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week8/z-transform.ipynb?download=false 4/13

Properties of the z-Transform
  Property Discrete Time Domain  Transform

1 Linearity

2 Shift of 

3 Left shift

4 Right shift

5 Multiplication by 

6 Multiplication by 

7 Multiplication by 

8 Multiplication by 

9 Summation in time

10 Time convolution

11 Frequency convolution

12 Initial value theorem

13 Final value theorem

For proofs refer to Section 9.2 of Karris.

Some Selected Common z-Transforms

The Geometric Sequence



a [n] + b [n] +⋯f1 f2 a (z) + b (z) +⋯F1 F2

x[n] [n]u0 f [n − m] [n − m]u0 F(z)z−m

f [n − m] F(z) + f [n − m]z−m ∑
n=0

m−1

z−n

f [n + m] F(z) + f [n + m]zm ∑
n=−m

−1

z−n

an f [n]an F ( )
z

a

e−nsTs f [n]e−nsTs F ( z)esTs

n nf [n] −z F(z)
d

dz

n2 f [n]n2 −z F(z) + F(z)
d

dz
z2

d2

dz2

f [m]∑
m=0

n

F(z)
z

z − 1

[n] ∗ [n]f1 f2 (z) (z)F1 F2

[n] [n]f1 f2 ∮ x (v) ( ) dv
1

j2π
F1 F2

z

v
v−1

f [0] = F(z)lim
z→∞

f [n] = (z − 1)F(z)lim
n→∞

lim
z→1

f [n] = {
0

an
n = −1,−2,−3,…

n = 0, 1, 2, 3,…

F(z) = f [n] = =∑
n=0

∞

z−n ∑
n=0

∞

an z−n ∑
n=0

∞

(a )z−1
n
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After some analysis , this can be shown to have a closed-form expression

Notes

1. See Karris pp 9-12—9-13 for the details
2. This function converges only if  and the region of convergence is outside the cicle centred

at  with radius 

Region of convergence

The Delta Sequence

1 2

F(z) = =
1

1 − az−1

z

z − a

|z| < |a|

z = 0 r = |a|

δ[n] = {
1

0

n = 0

otherwise

 {δ[n]} = Δ(z) = δ[n] = 1 + 0 = 1∑
n=0

∞

z−n ∑
n=1

∞

z−n

δ[n] ⇔ 1
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The Unit Step

Z-Transform of Unit Step

This is a special case of the geometric sequence with  so

Region of convergence is 

Exponontial Decay Sequence

This is a geometric sequence with , so

[n] = {u0
0

1

n < 0

n ≥ 0

 { [n]} (z) = [n] =u0 U0 ∑
n=0

∞

u0 z−n ∑
n=0

∞

z−n

a = 1

(z) = =U0

1

1 − z−1

z

z − 1

|z| > 1

f [n] = [n]enaTsu0

F(z) = = 1 + + + +⋯∑
n=0

∞

e−nasTs z−n e−aTs z−1 e−2aTs z−2 e−a3Ts z−3

a = e−aTs

 { [n]} = =enaTsu0
1

1 − e−aTs z−1

z

z − e−aTs
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Region of convergence is 

Ramp Function

We recognize this as a signal  multiplied by  for which we have the property

After applying the property and some manipulation, we arrive at:

| | < 1e−aTs z−1

f [n] = n [n]u0

 {n [n]} = n = 0 + + 2 + 3 +⋯u0 ∑
n=0

∞

z−n z−1 z−2 z−3

[n]u0 n

nf [n] ⇔ −z F(z)
d

dz

n [n] ⇔u0
z

(z − 1)2
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z-Transform Tables
As usual, we can rely on this and similar analysis to have been tabulated for us and in practice we can rely
on tables of transform pairs, such as this one.

  f[n] F(z)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Relationship Between the Laplace and Z-Transform

δ[n] 1

δ[n − m] z−m

[n]anu0 |z| > a
z

z − a

[n]u0 |z| > 1
z

z − 1

( ) [n]e−anTs u0 | | < 1
z

z − e−aTs

e−aTs z−1

(cos na ) [n]Ts u0 |z| > 1
− z cos az2 Ts

− 2z cos a + 1z2 Ts

(sin na ) [n]Ts u0 |z| > 1
z sin aTs

− 2z cos a + 1z2 Ts

( cos na ) [n]an Ts u0 |z| > 1
− az cos az2 Ts

− 2az cos a +z2 Ts a2

( sin na ) [n]an Ts u0 |z| > 1
az sin aTs

− 2az cos a +z2 Ts a2

[n] − [n − m]u0 u0
− 1zm

(z − 1)zm−1

n [n]u0
z

(z − 1)2

[n]n2u0
z(z + 1)

(z − 1)3

[n + 1] [n]u0
z2

(z − 1)2

n [n]an u0
az

(z − a)2

[n]ann2u0
az(z + a)

(z − a)3

n[n + 1] [n]an u0
2az2

(z − a)3
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Given that we can represent a sampled signal in the complex frequency domain as the infinite sum of each
sequence value delayed by an integer multiple of the sampling time:

And by definition, the z-transform of such a sequence is:

It follows that

And

Mapping of s to z
Since  and  are both complex variables,  is a mapping from the -domain to the -domain and 

 is a mapping from the  to -domain.

Mapping of s to z
Now, since

F(s) = f [n]∑
n=0

∞

e−nsTs

F(z) = f [n]∑
n=0

∞

z−n

z = esTs

s = ln z
1

Ts

s z z = esTs s z

z = ln z/Ts z s

s = σ + jω

z = = = |z|eσ +jωT
s

T
s eσTs ejωT

s ejθ
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where  and .

Introduction of sampling frequency
Now, since  then  or  and 

We let

Hence by substitution:

Interpretation of the mapping s to z
The quantity  defines a unit-circle in the -plane centred at the origin.
And of course the term  represents the (stability) boundary between the left- and right-half planes
of the -plane.
What are the consequences of this?

Case I: 

When  we see that from  that 
The left-half plane of the -domain maps into the unit circle in the -plane.
Different negative values of  map onto concentric circles with radius less than unity.

Case II: 

When  we see that from  that 
The right-half plane of the -domain maps outside the unit circle in the -plane.
Different positive values of  map onto concentric circles with radius greater than unity.

Case III: 

When ,  and 
All values of  lie on the circumference of the unit circle.

|z| = eσTs θ = ωTs

= 1/Ts fs = 2π/ωs fs = /(2π)fs ωs = 2π/Ts ωs

θ = ω = ω = 2πTs

2π

ωs

ω

ωs

z = eσt ej2πω/ωs

ej2πω/ωs z

σ

s

σ < 0

σ < 0 |z| = eσTs |z| < 1

s z

σ

σ > 0

σ > 0 |z| = eσTs |z| > 1

s z

σ

σ = 0

σ = 0 |z| = 1 θ = 2πω/ωs

ω
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Stability Region - s-Plane

Stability Region - z-Plane
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Frequencies in the z-Domain
As a consequence of the result for Case III above, we can explore how frequencies (that is is
values of ) map onto the -plane.
We already know that these frequencies will map onto the unit circle and by  the
angles are related to the sampling frequency.
Let's see how

Mapping of multiples of sampling frequency

 [radians/sec]  [radians]

0 1 0

1

1

1

1

1

1

1

1

Mapping of s-plane to z-plane

s = ±jω z

θ = 2πω/ωs

ω |z| θ

/8ωs π/4

/4ωs π/2

3 /8ωs 3π/4

/2ωs π

5 /8ωs 5π/4

3 /4ωs 3π/2

7 /8ωs 7π/4

ωs 2π
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Mapping z-plane to s-plane
There is no unique mapping of  to  since

but for a complex variable

This is in agreement with the theoretical idea that in the frequency domain, sampling creates an infinite
number of spectra, each of which is centred around .

Frequency aliasing
It's worth observing that any stable complex pole in the -plane  will have complex
conjugate pair .
Providing  these poles will be mapped to the upper and lower half-plane of the -plane
respectively.
If , an upper-half plane pole will be mapped to the lower-half plane and will have an
effective frequency of .
Similarly, its conjugate pair will move into the upper-half plane.

This is another way of looking at aliasing.

Also, any poles with frequency  will also be aliased back into into the unit circle.

Summary
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Next session

The Inverse Z-Transform – an examples class

Homework

Problems 1 to 3 in Section 9.10 Exercises of Karris explore the z-Transform

z s

s = ln z
1

Ts

ln z = ln z ± j2nπ

±nωs

s s = −σ + jω

s = −σ − jω

ω < /2ωs z

ω > /2ωs

/2 − ωωs

ω > ωs


