
16/04/2018 sampling

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week8/sampling.ipynb?download=false 1/19

In []:

cd matlab
pwd

Sampling Systems

Scope and Background Reading
This session is an introduction to sampling theory. It reviews the important ideas that pertain to sampling but
leaves the detailed mathematics for your further study.

The material in this presentation and notes is based on Chapter 15 of Benoit Boulet, Fundamentals of
Signals and Systems (http://site.ebrary.com/lib/swansea/docDetail.action?docID=10228195) from the
Recommended Reading List and you'll find the mathematical treatments there. There is much more detail
in Chapter 9 of Steven T. Karris, Signals and Systems: with Matlab Computation and Simulink Modelling, 5th
Edition (http://site.ebrary.com/lib/swansea/docDetail.action?docID=10547416) from the Required Reading
List.

Agenda

Sampling of Continuous-Time Signals

Signal Reconstruction

Discrete-time Processing of Continuous-Time Signals

Sampling of Discrete-Time Systems

Acknowledgements
We will be using an adaptation of a pair of demo scripts to illustrate alialising. These scripts were published
by Prof. Charles A. Bouman, School of Electrical and Computer Engineering, Purdue University as part of the
course materials for ECE438: Digital Signal Processing (https://engineering.purdue.edu/VISE/ee438/demos/).

Introduction
The sampling process provides the bridge between continuous-time (CT) and discrete-time (DT)
signals
Sampling records discrete values of a CT signal at periodic instants of time.
Sampled data can be used in real-time or off-line processing
Sampling opens up possibility of processing CT signals through finite impulse response (FIR) and
infinite impulse response (IIR) filters.

http://site.ebrary.com/lib/swansea/docDetail.action?docID=10228195
http://site.ebrary.com/lib/swansea/docDetail.action?docID=10547416
https://engineering.purdue.edu/VISE/ee438/demos/

16/04/2018 sampling

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week8/sampling.ipynb?download=false 2/19

A Real Example
I need a volunteer to provide a sound sample

1. I will use this Live Script (https://uk.mathworks.com/help/matlab/matlab_prog/what-is-a-live-script-
or-function.html) sampling_demo.mlx (https://github.com/cpjobling/EG-247-
Resources/blob/master/week8/matlab/sampling_demo.mlx) to sample your voice.

2. I will then playback the recording.
3. I will the plot the data.

In [19]:

open sampling_demo

Technical Details
Sampling rate: 8000 samples per second (fs = 8 kHz)
Resolution: 8 bits per sample
Channels: 1 channel.
Reconstruction: Matlab plays the audio back at 8192 samples per second.

Question
What will the bit-rate be for playback?

Sampling CT Signals
What is going on here?

https://uk.mathworks.com/help/matlab/matlab_prog/what-is-a-live-script-or-function.html
https://github.com/cpjobling/EG-247-Resources/blob/master/week8/matlab/sampling_demo.mlx

16/04/2018 sampling

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week8/sampling.ipynb?download=false 3/19

Time domain
Sampling can be modelled as the multiplication of a continuous-time signal by a sequence of periodic
impulses as illustrated here.

This is a form of modulation

 is the period of the periodic sampling function.

Frequency domain
Multiplication in time domain is convolution in the frequency domain

 is the frequency of the periodic sampling function = .

Ts

ωs 2π/Ts

16/04/2018 sampling

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week8/sampling.ipynb?download=false 4/19

The Mathematics
The Sampled signal:

Frequency convolution:

Sampling property:

Sifting property:

Nyquist-Shannon Sampling Theorem
Gives a sufficient condition to recover a continuous time signal from its samples , is an integer.

Sampling Theoreom

Let be a band-limited signal with for .

Then is uniquely determined by its samples , if

where is the sampling frequency.

(t) = x(k)δ(t − k)xs ∑
k=−∞

+∞

Ts Ts

(ω) = X(υ) δ(t − υ − k) dυXs

1

Ts ∫
+∞

−∞
∑

k=−∞

+∞

ωs

(ω) = X(ω − k)δ(t − υ − k) dυXs

1

Ts ∫
+∞

−∞
∑

k=−∞

+∞

ωs ωs

(ω) = X(ω − k)Xs

1

Ts
∑

n=−∞

+∞

ωs

x(n)Ts n

x(t) X(ω) = 0 |ω| > ωM

x(t) x(n)Ts ∞ < n < +∞

> 2 ,ωs ωM

= 2π/ωs Ts

16/04/2018 sampling

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week8/sampling.ipynb?download=false 5/19

Recovery of signal by filtering

16/04/2018 sampling

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week8/sampling.ipynb?download=false 6/19

Ideal Lowpass Filter for CT Recovery from DT Sampled Signal

This is of course theoretical only!

Sample-and-hold

Sample-and-hold operator

16/04/2018 sampling

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week8/sampling.ipynb?download=false 7/19

Matlab example
Basic set up

In [20]:

clear all
w0 = 1; % fundamental frequency rad/s
t0=2*pi/w0; % period s
tmax = 1.5*t0; % plotable range

Define a suitable signal
We will use a system with an underdamped second-order response.

The transfer function is:

In [21]:

syms s t
zeta = 0.3;
H = w0^2/(s^2 + 2*zeta*w0*s + w0^2)

Calculate and plot impulse response

In [22]:

h = ilaplace(H)

In [23]:

t = linspace(0,tmax,100);
xc = eval(h); % eval evaluates a symbolic expression as a Matlab command.
tc = t;

H(s) =
ω2

0

+ 2ζ s +s2 ω0 ω2
0

H =

1/(s^2 + (3*s)/5 + 1)

h =

(10*91^(1/2)*exp(-(3*t)/10)*sin((91^(1/2)*t)/10))/91

16/04/2018 sampling

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week8/sampling.ipynb?download=false 8/19

In [24]:

plot(tc,xc)
title('Fig 1: Continuous Time Signal x(t)')
ylabel('x(t)')
xlabel('Time t [s]')

You can generate all the images in this presentation by running the Matlab script: sampling.m
(https://github.com/cpjobling/EG-247-Resources/blob/master/week8/matlab/sampling.m) which is also
available as a Live Script sampling.mlx (https://github.com/cpjobling/EG-247-
Resources/blob/master/week8/matlab/sampling.mlx).

Calculate and plot sampled data

In [25]:

ws = 4*w0; % twice minimum!
Ts = (2*pi)/ws;
t = 0:Ts:tmax;
xs = eval(h);
td = t;

https://github.com/cpjobling/EG-247-Resources/blob/master/week8/matlab/sampling.m
https://github.com/cpjobling/EG-247-Resources/blob/master/week8/matlab/sampling.mlx

16/04/2018 sampling

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week8/sampling.ipynb?download=false 9/19

In [26]:

stem(td,xs)
hold on
plot(tc,xc,'r:')
hold off
title('Fig 2: Sampled Signal x_s(t)')
ylabel('x_s(t)')
xlabel('Time t [s]')

16/04/2018 sampling

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week8/sampling.ipynb?download=false 10/19

Notes
The sampled signal carries the same information as the samples themselves, so we should be able to
recover the entire signal .

From the block diagram of the sample-and-hold operator, what we would need to do is find the inverse of
the ZOH system with impulse response and then use a perfect lowpass filter.

The frequency response is given by the usual sinc function for an even rectangular pulse signal,
multiplied by because we need a time delay of to make the signal causal:

The inverse of is given by

The reconstruction filter is the cascade of the inverse filter and the lowpass filter:

The frequency response of this filter and additional notes are to be found on Page 546 of Boulet.

Signal Reconstruction
Problem

We have a bandlimited signal that is sampled at the Nyquist-Shannon sampling frequency
.

We therefore have a discrete-time (DT) signal from which we want to reconstruct the original
signal.

Perfect Signal Interpolation Using sinc Functions
In the frequency domain, the ideal way to reconstruct the signal would be to construct a chain of
impulses and then to filter this signal with an ideal lowpass filter.
In the time domain, this is equivalent to interpolating the samples using time-shifted sinc functions
with zeros at for .

(t)x0

x(t)

(t)h0

(ω)H0

e
−jω /2Ts /2Ts

(ω) = = 2H0 Tse
−jω /2Ts

sin(π ω)
Ts

2π

π ω
Ts

2π

e
−jω /2Ts

sin(ω /2)Ts

ω

(ω)H0

(ω) = (ω) =H1 H
−1 1

2
e
jω

Ts

2

ω

sin(ω)
Ts

2

(ω) = (ω) (ω)Hr TsHlp H1

= 2π/ωs Ts

x(n)Ts

(t)xs

nTs =ωc ωs

16/04/2018 sampling

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week8/sampling.ipynb?download=false 11/19

Signal reconstructed with sinc function

In [27]:

stem(td,xs)
hold on
x = zeros(length(td),length(tc));
for k=1:length(td)
 xk = xs(k);
 sincx = xk*sin(pi*(tc - td(k))/Ts)./(pi*(tc - td(k))/Ts);
 x(k,:) = sincx;
end

16/04/2018 sampling

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week8/sampling.ipynb?download=false 12/19

In [28]:

plot(tc,x,'-.')
hold off
title('Fig 5: Signal x(t) reconstructed with sinc functions')
ylabel('x(t)')
xlabel('Time t [s]')

Each impulse in triggers the impulse reponse of the lowpass filter (the sinc signal), the resulting signal
 at the output of the filter is the sum of all these time-shifted sinc signals with amplitudes equal to the

samples .

(Note we have defined as .)

(t)xs

x(t)

x(n)Ts

x(t) = x(n)sinc()∑
k=−∞

+∞

Ts
t − nTs

Ts

sinc(x) sin(πx)/(πx)

16/04/2018 sampling

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week8/sampling.ipynb?download=false 13/19

Reconstructed signal

Obtained by summing all the sinc functions

In [29]:

plot(tc,sum(x),tc,xc,'r:')
title('Fig 6: Reconstruction with sinc functions')
ylabel('x(t)')

This is clearly unfeasible, at least in real-time, so we have to resort to approximations of the ideal low-pass
filter.

A couple of examples are given below. Boulet gives more information including an evaluation of the quality
of the approximation.

In practice, the zero-order-hold is often used in practice and a low-pass filter with a flat passband (such as
the Butterworth filter discussed in the last lecture) would be used. In audio applications, for example, the
low-pass nature of speakers and the human ear add additional smoothing. For non HiFi applications (e.g. an
MP3 player), this may be all that is actually used!

Signal reconstructed with zero-order hold (ZOH)

16/04/2018 sampling

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week8/sampling.ipynb?download=false 14/19

In [30]:

stairs(td,xs)
hold on
plot(tc,xc,'r:')
title('Fig 3: Signal x(t) reconstructed with zero-order-hold')
ylabel('x(t)')
xlabel('Time t [s]')

Signal reconstructed with First-order hold (FOH)

16/04/2018 sampling

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week8/sampling.ipynb?download=false 15/19

In [31]:

plot(td,xs,'bo-',tc,xc,'r:')
title('Fig 4: Signal x(t) reconstructed with first-order-hold')
ylabel('x(t)')
xlabel('Time t [s]')

Aliasing
Aliasing Occurs when the sampling frequency is too low to ovoid overlapping between the spectra.
When aliasing occours, we have violated the sampling theorem: that is .
When aliasing occurs, the original signal cannot be recovered by lowpass filtering.

< 2ωs ωm

16/04/2018 sampling

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week8/sampling.ipynb?download=false 16/19

An Aliased Signal

Example 1
We use the recording made at the start and run it through a script that effectively aliases the original signal
be reducing the sampling frequency to less than half the original sampling frequency.

Here's the script: aliaseg1.mlx (https://github.com/cpjobling/EG-247-
Resources/blob/master/week8/matlab/aliaseg1.mlx) that I'll be using. (Also available as an m-file aliaseg1.m
(https://github.com/cpjobling/EG-247-Resources/blob/master/week8/matlab/aliaseg1.m))

In [32]:

open aliaseg1

Example 2
Assume signal is sampled at a rate of , violating the sampling theorem.

In [33]:

open aliasing

x(t) = cos(t)ω0 = 1.5ωs ω0

https://github.com/cpjobling/EG-247-Resources/blob/master/week8/matlab/aliaseg1.mlx
https://github.com/cpjobling/EG-247-Resources/blob/master/week8/matlab/aliaseg1.m

16/04/2018 sampling

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week8/sampling.ipynb?download=false 17/19

We can see the effect on the plot below:

Image generated by aliasing.mlx (https://github.com/cpjobling/EG-247-
Resources/blob/master/week8/matlab/aliasing.mlx) (Also available as aliasing.m
(https://github.com/cpjobling/EG-247-Resources/blob/master/week8/matlab/aliasing.m)).

You should confirm for yourself that after lowpass filtering the spectrum with a filter with cutofff frequency
 that the signal returned is the spectrum of

Antialising Filters
Most real signals are not band-limited so we have to artificially make them bandlimited using an
anti-aliasing filter.
An anti-aliasing filter is a low-pass filter whose cutoff frequency is lower than half the sampling
frequency.
This can produce some distortion at high-frequencies but this is often better than the distortion that
would occur at low frequencies if aliasing was allowed to happen.
For more on this topic see Pages 551—552 of Boulet.

= /2ωc ωs x(t) = cos(t/2)ω0

https://github.com/cpjobling/EG-247-Resources/blob/master/week8/matlab/aliasing.mlx
https://github.com/cpjobling/EG-247-Resources/blob/master/week8/matlab/aliasing.m

16/04/2018 sampling

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week8/sampling.ipynb?download=false 18/19

Example 3
This example uses anti-aliasing to downsample the audio. You should hear that the sound is less distorted
as we sample below the sampling frequency of 8 kHz.

Script: aliaseg2.mlx (https://github.com/cpjobling/EG-247-
Resources/blob/master/week8/matlab/aliaseg2.mlx) (Also available as an m-file aliaseg2.m
(https://github.com/cpjobling/EG-247-Resources/blob/master/week8/matlab/aliaseg2.m))

In [34]:

open aliaseg2

Practical application - digital audio
Human beings can hear sounds with frequencies up to around 20 kHz so when recording music in the
modern sound studio (or phone or PC for that matter) the audio signal is antialiased with a 22 kHz filter. The
signal is then sampled at 44.1 kHz before being stored for later processing and/or playback.

DT Processing of CT Signals

The concepts presented in this session provide a model that allows us to cross the bridge between the
theoretical concept of impulse chain sampling through to a representation of a signal as discrete sequence

 (to be introduced next lecture) and back to a continuous-time signal via reconstruction.

The mathematics predicts the nature of the signals that are processed in the ideal case, but we will leave it
with you to study these for yourself. (See Boulet pp 552—557).

In practice, modern digital processing relies on the use of an analogue-to-digital converter (ADC) (which also
introduces amplitude quantization), finite-length arithmetic inside the discrete-time system (usually a
microprocessor, microcontroller or digital signal processor), followed by conversion back to a step-wise
continuous signal via a digital to analogue converter (DAC) that operates like a zero-order-hold.

x[n]

https://github.com/cpjobling/EG-247-Resources/blob/master/week8/matlab/aliaseg2.mlx
https://github.com/cpjobling/EG-247-Resources/blob/master/week8/matlab/aliaseg2.m

16/04/2018 sampling

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week8/sampling.ipynb?download=false 19/19

Sampling of DT Signals
In modern signal processing and digital communications many of the operations that were once
done in continuous time are now done entirely in discrete time.
For example, we can implement sampling and modulation in discrete time.
We can also upsample (interpolate between samples) or downsample (reduce the number of
samples in a discrete-time signal)

These topics are left to you for further study.

Summary
Sampling of Continuous-Time Signals
Signal Reconstruction
Discrete-time Processing of Continuous-Time Signals
Sampling of Discrete-Time Systems

Next session

The Z-Transform

Answer to Question

bit rate = [number of samples per second] x [number of bits per sample] x [number of channels]

bit rate = bits/second [baud]

bit rate = bits/second

Matlab Functions used
The matlab recorder command is: recorder = audiorecorder(Fs,nBits,nChannels);
Sound is recorded using: recordblocking(recObj, time);
Recorded sound is played back: play(recorder);
Sound is extracted as Matlab data using: x = getaudiodata(recorder);
Sound is plotted against sample number using: plot(x)
I extracted 50 points for the stem plot using stem([1000:1049],myRecording(1000:1049))
Sound is saved as an audio file using: audiowrite(audioFile,myRecording,Fs); where
audiofile is a filename in form name.extension. Supported extensions are '.wav', '.ogg',
and '.flac' on all platforms. Windows and Mac support '.m4m' and '.mp4'.
Sound is loaded using [x,Fs]=audioread(audioFile);. Additional file formats are supported
for reading including '.mp3'.
Frequency response spectra were generated using the fast Fourier transform (fft) function.
Multiple graphs in one figure window is achieved using subplot.

For more information use doc command from the command-line.

8192 × 8 × 1

65, 536

