This session we will apply what we have learned about Fourier transforms to some typical circuit problems. After a short introduction, this session will be an examples class.
The material in this presentation and notes is based on Chapter 8 (Starting at Section 8.8) of Steven T. Karris, Signals and Systems: with Matlab Computation and Simulink Modelling, 5th Edition. from the Required Reading List. I also used Chapter 5 of Benoit Boulet, Fundamentals of Signals and Systems from the Recommended Reading List.
Recall that the convolution integral of a system with impulse response $h(t)$ and input $u(t)$ is
$$h(t)*u(t)=\int_{-\infty}^{\infty}h(t-\tau)u(\tau)\,d\tau.$$
We let
$$g(t) = h(t)*u(t)$$
Then by the time convolution property
$$h(t)*u(t) = g(t) \Leftrightarrow G(\omega) = H(\omega).U(\omega)$$
We call $H(\omega)$ the system function.
We note that the system function $H(\omega)$ and the impulse response $h(t)$ form the Fourier transform pair
$$h(t) \Leftrightarrow H(\omega)$$
If we know the impulse resonse $h(t)$, we can compute the system response $g(t)$ of any input $u(t)$ by multiplying the Fourier transforms of $H(\omega)$ and $U(\omega)$ to obtain $G(\omega)$. Then we take the inverse Fourier transform of $G(\omega)$ to obtain the response $g(t)$.
Karris example 8.8: for the linear network shown below, the impulse response is $h(t)=3e^{-2t}$. Use the Fourier transform to compute the response $y(t)$ when the input $u(t)=2[u_0(t)-u_0(t-3)]$. Verify the result with Matlab.
syms t w
U1 = fourier(2*heaviside(t),t,w)
U1 = 2*pi*dirac(w) - 2i/w
H = fourier(3*exp(-2*t)*heaviside(t),t,w)
H = 3/(2 + w*1i)
Y1=simplify(H*U1)
Y1 = 3*pi*dirac(w) - 6i/(w*(2 + w*1i))
y1 = simplify(ifourier(Y1,w,t))
y1 = (3*exp(-2*t)*(sign(t) + 1)*(exp(2*t) - 1))/2
Get y2
Substitute $t-3$ into $t$.
y2 = subs(y1,t,t-3)
y2 = (3*exp(6 - 2*t)*(sign(t - 3) + 1)*(exp(2*t - 6) - 1))/2
y = y1 - y2
y = (3*exp(-2*t)*(sign(t) + 1)*(exp(2*t) - 1))/2 - (3*exp(6 - 2*t)*(sign(t - 3) + 1)*(exp(2*t - 6) - 1))/2
Plot result
ezplot(y)
title('Solution to Example 1')
ylabel('y(y)')
xlabel('t [s]')
grid
Karris example 8.9: for the circuit shown below, use the Fourier transfrom method, and the system function $H(\omega)$ to compute $V_L(t)$. Assume $i_L(0^-)=0$. Verify the result with Matlab.
syms t w
H = j*w/(j*w + 2)
H = (w*1i)/(2 + w*1i)
Vin = fourier(5*exp(-3*t)*heaviside(t),t,w)
Vin = 5/(3 + w*1i)
Vout=simplify(H*Vin)
Vout = (w*5i)/((2 + w*1i)*(3 + w*1i))
vout = simplify(ifourier(Vout,w,t))
vout = -(5*exp(-3*t)*(sign(t) + 1)*(2*exp(t) - 3))/2
Plot result
ezplot(vout)
title('Solution to Example 2')
ylabel('v_{out}(t) [V]')
xlabel('t [s]')
grid
Karris example 8.10: for the linear network shown below, the input-output relationship is:
$$\frac{d}{dt}v_{\mathrm{out}}+4v_{\mathrm{out}}=10v_{\mathrm{in}}$$
where $v_{\mathrm{in}}=3e^{-2t}$. Use the Fourier transform method, and the system function $H(\omega)$ to compute the output $v_{\mathrm{out}}$. Verify the result with Matlab.
syms t w
H = 10/(j*w + 4)
H = 10/(4 + w*1i)
Vin = fourier(3*exp(-2*t)*heaviside(t),t,w)
Vin = 3/(2 + w*1i)
Vout=simplify(H*Vin)
Vout = 30/((2 + w*1i)*(4 + w*1i))
vout = simplify(ifourier(Vout,w,t))
vout = (15*exp(-4*t)*(sign(t) + 1)*(exp(2*t) - 1))/2
Plot result
ezplot(vout)
title('Solution to Example 2')
ylabel('v_{out}(t) [V]')
xlabel('t [s]')
grid
Karris example 8.11: the voltage across a 1 $\Omega$ resistor is known to be $V_{R}(t)=3e^{-2t} u_0(t)$. Compute the energy dissipated in the resistor for $0\lt t\lt\infty$, and verify the result using Parseval's theorem. Verify the result with Matlab.
Note from tables of integrals
$$\int\frac{1}{a^2 + x^2}\,dx = \frac{1}{a}\arctan\frac{x}{a}+C.$$
syms t w
Calcuate energy from time function
Vr = 3*exp(-2*t)*heaviside(t);
R = 1;
Pr = Vr^2/R
Wr = int(Pr,t,0,inf)
Pr = 9*exp(-4*t)*heaviside(t)^2 Wr = 9/4
Calculate using Parseval's theorem
Fw = fourier(Vr,t,w)
Fw = 3/(2 + w*1i)
Fw2 = simplify(abs(Fw)^2)
Fw2 = 9/abs(2 + w*1i)^2
Wr=2/(2*pi)*int(Fw2,w,0,inf)
Wr = (51607450253003931*pi)/72057594037927936