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The Fourier Transform (Part 1)

Agenda

Fourier Transform as the Limit of a Fourier Series

Doing the Maths

Special forms of the Fourier Transform

Properties of the Fourier Transform

Computing Fourier Transforms in Matlab

Scope and Background Reading
This session continues our coverage of Fourier Analysis with an introduction to the Fourier Transform.

Fourier Series is used when we are dealing with signals that are periodic in time. It is based on
harmonics of the fundamental frequency  of the periodic signal where the period 

.
The line spectrum occur at integer multiples of the fundamental frequency  and is a discrete
(or sampled) function of frequency.
As the period  is increased, the distance between harmonics decreases because  reduces.
In the limit , the signal becomes aperiodic and  which is a continuous
function of frequency.

ω0
T = 2π/ω0

kω0

T ω0
T → ∞ k → ωω0
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This is the basis of the Fourier Transform which is very important as the basis for data transmission,
signal filtering, and the determination of system frequency reponse.

The material in this presentation and notes is based on Chapter 8 (Starting at Section 8.1) of Steven T.
Karris, Signals and Systems: with Matlab Computation and Simulink Modelling, 5th Edition.
(https://ebookcentral.proquest.com/lib/swansea-ebooks/reader.action?
ppg=271&docID=3384197&tm=1518709033960) from the Required Reading List. I also used Chapter 5
of Benoit Boulet, Fundamentals of Signals and Systems
(https://ebookcentral.proquest.com/lib/swansea-ebooks/reader.action?
ppg=194&docID=3135971&tm=1518709078944) from the Recommended Reading List.

Fourier Transform as the Limit of a Fourier Series
We start by considering the pulse train that we used in the last lecture and demonstrate that the discrete
line spectra for the Fourier Series becomes a continuous spectrum as the signal becomes aperiodic.

This analysis is from Boulet pp 142—144 and 176—180.

Let  be the Fourier series of the rectangular pulse train shown below:(t)x ̃ 

https://ebookcentral.proquest.com/lib/swansea-ebooks/reader.action?ppg=271&docID=3384197&tm=1518709033960
https://ebookcentral.proquest.com/lib/swansea-ebooks/reader.action?ppg=194&docID=3135971&tm=1518709078944
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Fourier Series
In the previous lecture (http://nbviewer.jupyter.org/github/cpjobling/EG-247-
Resources/blob/master/week5/exp_fs2.ipynb) we used

to compute the line spectra.

 Note there has been a slight change of nomenclature: previously we used  and  for what we now
call  and .

From the Time Point of View
If we instead take a time point-of-view and let 

Let's complete the analysis on the whiteboard.

*

= A d( t) = d( t)Ck
1

2π ∫
π/w

− π/w
e− jk( t)ω0 ω0

A
2π ∫

π/w

− π/w
e− jk( t)ω0 ω0

* Ω0 T0
ω0 T

A = 1

= dt.Ck
1
T ∫

t0

− t0
e− jk tω0

http://nbviewer.jupyter.org/github/cpjobling/EG-247-Resources/blob/master/week5/exp_fs2.ipynb
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The Sinc Function
The function,  crops up again and again in Fourier analysis. The Fourier coefficients  are
scaled samples of the real continuous normalized sinc function defined as follows:

The function is equal to 1 at  and has zero crossings at  as shown below.

Plot the sinc function
Plots:

sin(x)/x Ck

sinc u := , u ∈ ℝ.sin πu
πu

u = 0* u = ± n, n = 1, 2, 3, …

sinc(u ) = , u ∈ ℝsin πu
πu
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In [2]: x = linspace(-5,5,1000);
plot(x,sin(pi.*x)./(pi.*x))
grid
title('Graph of sinc function')
ylabel('sinc(u)')
xlabel('u')

Matlab code to reproduce this plot: sinc_plot.m (matlab/sinc_plot.m).

Note  is undefined at . To compute its value we need to take the limit

which can be shown to be 1. I leave the discovery of the proof to you and the internet.

Duty cycle
We define the duty cycle  of the rectangular pulse train as the fraction of the time the
signal is "on" (equal to 1) over one period.
The duty cycle is often given as a percentage.

sin(πu )/(πu ) u = 0

lim
u →0

sin(πu )
u

η = 2 /Tt0

http://localhost:8890/nbconvert/html/week6/matlab/sinc_plot.m
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The spectral coefficients expressed using the normalized sinc function and the duty cycle can be written
as

Normalize the spectral coefficients
Let us normalize the spectral coefficients of  by mutiplying them by , and assume  is fixed so that
the duty cycle  will decrease as we increase :

Then the normalized coefficents  of the rectangular wave a sinc envelope with constant amplitude at
the origin equal to , and a zero crossing at fixed frequency  rad/s, both independent of T.

Plots follow (use duty_cycle.m (matlab/duty_cycle.m) to reproduce).

= = sinc( )Ck
2t0
T

sin( )πk2t0
T

πk2t0
T

2t0
T

k2t0
T

= η sinc(kη)Ck

(t)x ̃ T t0
η = 2 /Tt0 T

T = Tη sinc(kη) = 2 sinc(k )Ck t0
2t0
T

TCk
2t0 π/t0

http://localhost:8890/nbconvert/html/week6/matlab/duty_cycle.m
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Durty cycle 50%
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Duty cycle 12.5%

Comments
As the fundamental period increases, we get more spectral lines packed into the lobes of the
sinc envelope.
These normalized spectral coefficients turn out to be samples of the continuous sinc function on
the spectrum of 
The two spectra are plotted against the frequency variable  with units of rad/s rather than
index of harmonic component
The first zeros of each side of the main lobe are at frequencies  rad/s
The zero-crossing points of sinc envelope are independent of the period T. They only depend on

.

(t)x ̃ 
kω0

ω = ± π/t0

t0
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Intuition leading to the Fourier Transform
An aperiodic signal that has been made periodic by "repeating" its graph every  seconds will
have a line spectrum that becomes more and more dense as the fundamental period is made
longer and longer.
The line spectrum has the same continuous envelope.
As  goes to infinity, the line spectrum will become a continuous function of .
The envelope is this function.

Doing the Maths
Fourier series coefficients for the rectangular wave are computed using:

where  as usual.

Now define a signal  as a signal equal to  over one period and zero elsewhere.

T

T ω

= (t) dtCk
1
T ∫

t0

− t0
x ̃ e− jk( t)ω0

= 2π/Tω0

x(t) (t)x ̃ 
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A rectangular pulse
The aperiodic signal, a single rectangular pulse, can be thought of as being periodic with an infinite
fundamental period (we will let  later).

Since  over , the spectral coefficients  of the periodic signal  can be
written in terms of the aperiodic signal  as follows:

Let us define the envelope  of  (we already know this to be the sinc function):

The coefficients  are therefore samples of the continuous envelope :

Back to the periodic signal
 has the Fourier series representation

or equivalently, since :

Now take the limits
At the limit, as , in

T → + ∞

(t) = x(t)x ̃ t ∈ [− T/2, T/2] Ck (t)x ̃ 
x(t)

= x(t) dt.Ck
1
T ∫

+ ∞

− ∞
e− jkωt

X(jω) TCk

X(jω) := x(t) dt = dt = 2 sinc( ω).∫
+ ∞

− ∞
e− jωt ∫

+ t0

− t0
e− jωt t0

t0
π

Ck X(jω)

= X(jk ).Ck
1
T

ω0

(t)x ̃ 

(t) = X(jk ) .x ̃ ∑
k= − ∞

∞ 1
T

ω0 ejk tω0

= 2π/Tω0

(t) = X(jk ) .x ̃ 1
2π ∑

k= − ∞

∞
ω0 ejk tω0 ω0

T → ∞

(t) = X(jk ) .x ̃ 1
2π ∑

k= − ∞

∞
ω0 ejk tω0 ω0
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We get

 – the fundamental frequency becomes infinitesimally small.
 – harmonic frequencies get so close together they become a continuum.

The summation becomes an integral.
 – the periodic signal tends to the aperiodic signal.

Define the Inverse Fourier and Fourier Transform
Putting these elements together we have an expression for the aperiodic signal in terms of its Fourier
transform:

Inverse Fourier Transform:

Similarly, given the expression we have already seen for an arbitrary :

Fourier Transform:

Fourier Transform Pair
The two equations on the previous slide are called the Fourier transform pair.

They are analogous to the Laplace transform pair we have already seen and we can develop
tables of properties and transform pairs in the same way.
Equation  gives the Fourier transform or the frequency spectrum of
the signal .
Equation  is the inverse Fourier transform. It gives the function of
time that has a given spectrum in the frequency domain.

→ dωω0
k → ωω0

(t) → x(t)x ̃ 

x(t) = X(jω) dω := {X(jω)}1
2π ∫

∞

− ∞
ejωt  − 1

x(t)

X(jω) = x(t) dt :=  {x(t)} .∫
∞

− ∞
e− jωt

X(jω) = x(t) dt.∫ ∞
− ∞ e− jωt

x(t)
x(t) = X(jω) dω.1

2π ∫ ∞
− ∞ ejωt
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Special Forms of the Fourier Transform
The table on the next slide is developed in Section 8.2 of Karris by assuming that in general both 
and  are complex. So that:

The Fourier transform can therefore be rewritten

which by Euler's identity becomes

So the Real and Imaginary parts of  are

We can do a similar analysis for the inverse Fourier transform.

Time Domain and Frequecy Domain Correspondence
By consideration of the Real and Imaginary parts of  and  we can construct the following table.
See Sections 8.2.1 Real-Time Functions and 8.2.2 Imaginary Time Functions which shows the
summarizes the nature of the Fourier transform for particular types of the signal.

Real Imaginary Complex Even Odd

Real   √   

Real and Even √   √  

Real and Odd  √   √

Imaginary   √   

Imaginary and Even  √  √  

Imaginary and Odd √    √

f (t)
F(jω)

f (t) = ℜ {f (t)} + jℑ {f (t)} = (t) + j (t)fRe fIm

F(jω) = (t) dt + j (t) dt∫
∞

− ∞
fRe ejωt ∫

∞

− ∞
fIm ejωt

F(jω) = [ (t) cos ωt + (t) sin ωt] dt − j [ (t) sin ωt − (t) cos ωt] dt∫
∞

− ∞
fRe fIm ∫

∞

− ∞
fRe fIm

F(jω)

(jω) = [ (t) cos ωt + (t) sin ωt] dtFRe ∫
∞

− ∞
fRe fIm

(jω) = − [ (t) sin ωt − (t) cos ωt] dtFIm ∫
∞

− ∞
fRe fIm

f (t) F(jω)

f (t)
F(jω)
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A useful consequence for f(t) real
If  is real (even or odd), the real part of  is even, and the imaginary part is odd.

Then, for  real:

and

Since

it follows that

or

Properties of the Fourier Transform
Again, we will provide any properties that you might need in the examination.

You will find a number of these in the accompanying notes.

For fun, you may like to read and even complete the proofs for these properties guided by the text books
Karris (Section 8.3) or Boulet pp 180—185.

We are more interested in your ability to exploit the properties in problem solving.

A little more detail is given in the notes available on Blackboard.

Linearity
The Fourier transform is a linear operation:

f (t) F(jω)

f (t)

(− jω) = (jω)FRe FRe

(− jω) = − (jω)FIm FIm

F(jω) = (jω) + j (jω)FRe FIm

F(− jω) = (− jω) + j ( − jω) = (jω) − j (jω)FRe FIm FRe FIm

F(− jω) = (jω)F∗

(t) + (t) + ⋯ + (t) ⇔ (jω) + (jω) + ⋯ + (jω)a1 f1 a2 f2 an fn a1 F1 a2 F2 an Fn



15/03/2018, 16+23ft1

Page 14 of 23http://localhost:8890/nbconvert/html/week6/ft1.ipynb?download=false

Symmetry
If  is the Fourier transform of , the symmetry property of the Fourier transform states that

That is if in  we replace  with , we obtain this pair.

Time/Frequency Scaling
Scaling the time variable with  either expands or compresses the Fourier transform:

For , the signal  is sped up (or compressed in time), so its frequency components
will be expanded to higher frequencies.
For , the signal  is slowed down (or expanded in time), so its frequency components
will be compressed to lower frequencies.

Time Shifting
A time shift results in a phase shift in the Fourier transform

where 

Frequency Shifting
Multiplying a time function by a complex exponential resuls in a frequency shift

Time Differentiation
If  is the Fourier transform of 

F(jω) f (t)

F(t) ⇔ 2πf (− jω)

F(jω) jω t

α ∈ ℝ

f (αt) ⇔ F (j )1
|α|

ω
α

α > 0 f (αt)

α < 0 f (αt)

f (t − ) ⇔ F(jω)t0 e− jω0

= 2π/ω0 t0

f (t) ⇔ X(jω − j )ejω0 ω0

F(jω) f (t)

f (t) ⇔ (jω F(jω)d n

dtn )n
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Frequency Differentiation
If  is the Fourier transform of 

Time Integration
If  is the Fourier transform of 

Conjugate Time and Frequency Functions
If  is the Fourier transform of the complex function 

Time Convolution

That is convolution in the time domain corresponds to multiplication in the frequency domain.

(Compare with Laplace Transform)

Frequency Convolution

That is, multiplication in the time domain corresponds to convolution in the frequency domain.

This also has application to amplitude modulation as shown in Boulet pp 182—183.

F(jω) f (t)

(− jt f (t) ⇔ F(jω))n d n

dωn

F(jω) f (t)

f (τ)dτ ⇔ + πF(0)δ(ω)∫
t

− ∞

F(jω)
jω

F(jω) f (t)

(t) ⇔ (− jω)f ∗ F∗

(t) ∗ (t) ⇔ (jω) (jω)f1 f2 F1 F2

(t) (t) ⇔ (jω) ∗ (jω)f1 f2
1

2π
F1 F2
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Area under f(t)

That is, the area under a time function  is equal to the value of the Fourier transform of  evaluated
at  rad/s.

Area under F(jomega)

That is, the value of a time function, , evaluated at  is equal to the area under its Fourier
transform  times .

Energy-Density Spectrum
Recalling that the power spectrum of a periodic signal is defined as the squared magnitudes of its
Fourier series coefficients. A plot of the power spectrum of a signal gives us an idea of the power at
different frequencies (harmonics).

By analogy, the energy-density spectrum of an aperiodic signal is defined as the magnitude squared of
its spectrum; that is  is the energy-density spectrum of .

For example

Note that for real signals, it is customary to include the negative frequency band as well.

Parseval's Theorem
Just like the total average power of a periodic signal is equal to the sume of the powers of all the
harmonics, the total energy in an aperidic signal is equal to the total energy in its sepctrum.

This is the Parseval equality for Fourier transforms:

f (t) dt = F(0)∫
∞

− ∞

f (t) f (t)
ω = 0

f (0) = F(jω) dω1
2π ∫

∞

− ∞

f (t) t = 0
F(jω) 1/2π

|F(jω)|2 f (t)

:= |F(jω) dω.E[ , ]ω1 ω2

1
2π ∫

ω2

ω1

|2

|f (t) dt = |F(jω) dω.∫
∞

− ∞
|2 1

2π ∫
∞

− ∞
|2
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Table of Properites of the Fourier Transform
As was the case of the Laplace Transform, properties of Fourier transforms are usually summarized in
Tables of Fourier Transform properties. For example this one: Properties of the Fourier Transform
(Wikpedia) (http://en.wikipedia.org/wiki/Fourier_transform#Properties_of_the_Fourier_transform) and
Table 8.8 in Karris (page 8-17).

More detail and some commentry is given in the printable version of these notes.

**Name** **Remarks**

1 Linearity

Fourier
transform is
a linear
operator.

2 Symmetry

3.
Time and
frequency
scaling

time
compression
is frequency
expansion
and *vice
versa*

4. Time shifting

A time shift
corresponds
to a phase
shift in
frequency
domain

5. Frequency
shifting

Multiplying a
signal by a
complex
exponential
results in a
frequency
shift.

6. Time
differentiation

7. Frequency
differentiation

8. Time
integration

9. Conjugation

f (t) F(jω)

(t) + (t) + ⋯ + (t)a1 f1 a2 f2 an fn (jω) + (jω) + ⋯ + (jω)a1 F1 a2 F2 an Fn

2πf (− jω) F(t)

f (αt) F (j )1
|α|

ω
α

f (t − )t0 F(jω)e− jωt0

f (t)ej tω0 F(jω − j )ω0

f (t)d n

dtn (jω F(jω))n

(− jt f (t))n F(jω)d n

dωn

f (τ)dτ∫
t

− ∞
+ πF(0)δ(ω)F(jω)

jω
(t)f ∗ (− jω)F∗

http://en.wikipedia.org/wiki/Fourier_transform#Properties_of_the_Fourier_transform


15/03/2018, 16+23ft1

Page 18 of 23http://localhost:8890/nbconvert/html/week6/ft1.ipynb?download=false

10. Time
convolution

Compare
with Laplace
Transform

11. Frequency
convolution

This has
application
to amplitude
modulation
as shown in
Boulet pp
182—183.

12. Area under 

Way to
calculate DC
(or average)
value of a
signal

13. Area under 

14.
Energy-
Density
Spectrum

15. Parseval's
theorem

Definition
RMS follows
from this

See also: Wikibooks: Engineering Tables/Fourier Transform Properties
(http://en.wikibooks.org/wiki/Engineering_Tables/Fourier_Transform_Properties) and Fourier Transfom—
WolframMathworld (http://mathworld.wolfram.com/FourierTransform.html) for more complete references.

Examples
1. Amplitude Modulation
2. Impulse response
3. Energy computation

Example 1: Amplitude Modulation
Compute the result of multiplying a signal  by a carrier waveform .

Hint use Euler's identity and the frequency shift property

(t) ∗ (t)f1 f2 (jω) (jω)F1 F2

(t) (t)f1 f2 (jω) ∗ (jω)1
2π

F1 F2

f (t) f (t) dt = F(0)∫
∞

− ∞

F(jω) f (0) = F(jω) dω1
2π ∫

∞

− ∞

:= |F(jω) dω.E[ , ]ω1 ω2

1
2π ∫

ω2

ω1

|2

|f (t) dt = |F(jω) dω.∫
∞

− ∞
|2 1

2π ∫
∞

− ∞
|2

f (t) cos tωc

http://en.wikibooks.org/wiki/Engineering_Tables/Fourier_Transform_Properties
http://mathworld.wolfram.com/FourierTransform.html
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Example 2: Impulse response
A system has impulse response . Compute the frequency sprectrum of this system.f (t) = (t)e− t u 0
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Example 3: Energy computation
An aperiodic real signal  has Fourier transform . Compute the energy contained the signal
between 5kHz and 10kHz.

Computing Fourier Transforms in Matlab
MATLAB has the built-in fourier and ifourier functions that can be used to compute the Fourier
transform and its inverse. We will explore some of thes in the next lab.

For now, here's an example:

Example
Use Matlab to confirm the Fourier transform pair:

f (t) F(jω)

⇔e− 1
2 t2 2π‾‾‾√ e− 1

2 ω2
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In [3]: syms t v omega x;
ft = exp(-t^2/2);
Fw = fourier(ft,omega)

In [4]: pretty(Fw)

Check by computing the inverse using ifourier

In [5]: ft = ifourier(Fw)

See script: ftex1.m (matlab/ftex1.m).

End of First Hour
Summary

Fourier Transform as the Limit of a Fourier Series
Doing the Maths
Special forms of the Fourier Transform
Properties of the Fourier Transform
Computing Fourier Transforms in Matlab

Next Hour

Fourier transform of commonly occuring signals
(http://nbviewer.ipython.org/github/cpjobling/EG-247-Resources/blob/master/week6/ft2.ipynb)

 
Fw =
 
2^(1/2)*pi^(1/2)*exp(-omega^2/2)
 

                    /        2 \
                    |   omega  |
sqrt(2) sqrt(pi) exp| - ------ |
                    \      2   /

 
ft =
 
exp(-x^2/2)
 

http://localhost:8890/nbconvert/html/week6/matlab/ftex1.m
http://nbviewer.ipython.org/github/cpjobling/EG-247-Resources/blob/master/week6/ft2.ipynb
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Worked Solutions

Let's complete the analysis in the notebook

and since 

Solution 1

it follows from the frequency shifting property that

Similarly

Remarks
We can also tackle this using the Frequency Convolution property. See Boulet pp 182—183.

= dt = − = − ( − )Ck
1
T ∫

t0

− t0
e− jkωt 1

jk Tω0
[ ]e− jk tω0 t0

− t0
1

jk Tω0
e− jkω0 t0 ejkω0 t0

= ( ) = 2Ck
2

k Tω0

−ejkω0 t0 e− jkω0 t0

2j
sin(k )ω0t0

k Tω0

ω = 2π/T

= = sinc (πk )Ck

sin(πk )2t0
T

kπ
T

2t0

2t0
T

cos t =ωc
+ej tωc e− j tωc

2

f (t) cos t ⇔ .ωc
F(jω − j ) + F(jω + j )ωc ωc

2

f (t) sin t ⇔ .ωc
F(jω − j ) − F(jω + j )ωc ωc

j2
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Solution 2

Thus

Solution 3
Use the Energy-Density function.

 { (t)}e− t u 0

F(jω)

=

=

=

=

dt∫
∞

0
e− te− jωt

dt∫
∞

0
e− (1+ jω)t

− = − [0 − 1]1
jω + 1 [ ]e− (1+ jω)t ∞

0
1

jω + 1
1

jω + 1

(t) ⇔e− t u 0
1

jω + 1

= [ |X(jω) dω + |X(jω) dω] = |X(jω)Er
[10,000π,20,000π]

1
2π ∫

20,000π

10,000π
|2 1

2π ∫
− 10,000π

− 20,000π
|2 1

π ∫
20,000π

10,000π
|2


