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Line Spectra and their Applications

Scope and Background Reading
This session concludes our introduction to Fourier Series.

Last time (http://nbviewer.jupyter.org/github/cpjobling/EG-247-
Resources/blob/master/week5/exp_fs2.ipynb) we saw that we could exploit the complex exponential 

 to redefine trigonometric Fourier Series into the Exponential Fourier Series and in so doing we
eliminate one integration and at the same time simplify the calculation of the coefficients of the Fourier
series.

In this session we show how the Exponential form of the Fourier Series leads us to the ability to present
wavefoms as line spectra, simplifies the calculation of power for systems with harmonics and leads in the
limit as  approaches infinity to the Fourier Transform.

The material in this presentation and notes is based on Chapter 7 (Starting at Section 7.10) of Steven T.
Karris, Signals and Systems: with Matlab Computation and Simulink Modelling, 5th Edition.
(https://ebookcentral.proquest.com/lib/swansea-ebooks/reader.action?
ppg=213&docID=3384197&tm=1518703346642) from the Required Reading List. Some clarificattion was
needed and I used Chapter 4 of Benoit Boulet, Fundamentals of Signals and Systems
(https://ebookcentral.proquest.com/lib/swansea-ebooks/reader.action?
ppg=150&docID=3135971&tm=1518703383001) from the Recommended Reading List for this.

Agenda
Last time

Exponents and Euler's Equation
The Exponential Fourier series
Symmetry in Exponential Fourier Series
Example

ejωt

T

http://nbviewer.jupyter.org/github/cpjobling/EG-247-Resources/blob/master/week5/exp_fs2.ipynb
https://ebookcentral.proquest.com/lib/swansea-ebooks/reader.action?ppg=213&docID=3384197&tm=1518703346642
https://ebookcentral.proquest.com/lib/swansea-ebooks/reader.action?ppg=150&docID=3135971&tm=1518703383001
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This Time

Line spectra
Power in periodic signals
Steady-state response of an LTI system to a periodic signal

Line Spectra
When the Exponential Fourier series are known is is useful to plot the amplitude and phase of the
harmonics on a frequency scale.

This is the spectrum of the Exponential Fourier Series calculated last time
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Line Spectra for Trig. FS
If we take the results for the Exponential Fourier Series and gather terms, the amplitudes for the Trig.
Fourier Series are given by:

Applying this to the previous result we get

= 2a0 C0

= ( + )a1 Ck C−k

= j( − )bk Ck C−k
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Example 3
Compute the exponential Fourier series for the waveform shown below and plot its line spectra.

Solution
The recurrent rectangular pulse is used extensively in digital communication systems. To determine how
faithfully such pulses will be transmitted, it is necessary to know the frequency components.

What do we know?

The pulse duration is .
The recurrence interval  is  times the pulse duration.

 is the ratio of pulse repetition time to the pulse duration – normally called the duty cycle.

Coefficients of the Exponential Fourier Series?
Given

Is the function even or odd?
Does the signal have half-wave symmetry?
What are the cosequencies of symmetry on the form of the coefficients ?
What function do we actually need to integrate to compute ?

T/w
T w

w

= f ( t) d( t)Ck
1

2π ∫
π

−π
Ω0 e−jk( t)Ω0 Ω0

Ck
Ck
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DC Component?
Let  then perform the integralk = 0
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Harmonic coefficients?
Integrate for 

Exponential Fourier Series?

k ≠ 0
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Effect of pulse width on frequency spectra
Recall pulse width = 

w = 2
 rad/s; ;  s;  s.

T/w

= 1Ω0 w = 2 T = 2π T/w = π
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w = 5
 rad/s; ;  s;  s.= 1Ω0 w = 5 T = 2π T/w = 2π/5
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w = 10
 rad/s; ;  s;  s.

Implications
As the width of the pulse reduces the width of the freqency spectra needed to fully describe the
signal increases
more bandwidth is needed to transmit the pulse.

Note

Text book seems to get the wrong results. Karris plots  rather than  in
producing the diagrams shown in Figs. 7.36—7-38.

However, if you view  as in indication of the bandwidth needed to transmit a pulse of width 
 the plots Karris gives make more sense.

= 1Ω0 w = 10 T = 2π T/w = π/5

sin(wx)/(wx) sin(x/w)/(x/w)

sin(wx)/wx
T/w
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Example 4
Use the result of Example 1 to compute the exponential Fourier series of the impulse train 
shown below

Solution
To solve this we take the previous result and choose amplitude (height)  so that area of pulse is unity.
Then we let width go to zero while maintaining the area of unity. This creates a train of impulses 

.

and, therefore

Try it!

δ(t ± 2πk)

A

δ(t ± 2πk)

=Cn
1

2π

f (t) = 1
2π ∑

k= −∞

∞
ejk tΩ0
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Proof!
From the previous result,

and the pulse width was defined as , that is

Let us take the previous impulse train as a recurrent pulse with amplitude

Pulse with unit area
The area of each pulse is then

and the pulse train is as shown below:

= .Cn
A
w

sin(kπ/w)
kπ/w

T/w

=T
w

2π
w

A = = = .1
T/w

1
2π/w

w
2π

× = 12π
w

w
2π
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New coefficents
The coefficients of the Exponential Fourier Series are now:

and as  each recurrent pulse becomes a unit impulse, and the pulse train reduces to a unit
impulse train.

Also, recalling that

the coefficents reduce to

That is all coefficients have the same amplitude and thus

Spectrum of Unit Impulse Train
The line spectrum of a sequence of unit impulses  is shown below:

= =Cn
w/2π

w
sin(kπ/w)

kπ/w
1

2π
sin(kπ/w)

kπ/w
π/w → 0

= 1lim
x→0

sinx
x

=Cn
1

2π

f (t) = 1
2π ∑

n= −∞

∞
ejk tΩ0

δ(t ± kT)
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Another Interesting Result
Consider the pulse train agin:

What happens when the pulses to the left and right of the centre pulse become less and less frequent?
That is what happens when ?

Well?
As  the fundamental frequency 
We are then left with just one pulse centred around .
The frequency difference between harmonics also becomes smaller.
Line spectrum becomes a continous function.

This result is the basis of the Fourier Transform which is coming next.

Power in Periodic Signals

T → ∞

T → ∞ → 0Ω0
t = 0
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In your previous courses you may have come across the definitions of Signal Energy, Average Signal
Power and Root Mean Square Power:

Parseval's Theorem
Parseval's Theorem (http://en.wikipedia.org/wiki/Parseval's_theorem) states that the total average power
of a a periodic signal  is equal to the sum of the average powers of all its harmonic components.

The power in the th harmonic  is given by

Since , the total power of the th harmomic is .

Parseval's theorem states that

RMS Power
By a similar argument:

E = |f (t) dt∫
T

0
|2

= |f (t) dtPav
1
T ∫

T

0
|2

=PRMS |f (t) dt1
T ∫

T

0
|2

‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾
√

f (t)

k Ckejk tΩ0

= dt = dt =Pk
1
T ∫

T

0
∣∣Ckejk tΩ0 ∣∣

2 1
T ∫

T

0
| |Ck

2 | |Ck
2

=Pk P−k k 2Pk

P = dt = .1
T ∫

T

0
f (t)∣∣ ∣∣2 ∑

k= −∞

∞
| |Ck

2

= = .PRMS dt1
T ∫

T

0
f (t)∣∣ ∣∣2

‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾
√ ∑

k= −∞

∞
| |Ck

2
‾ ‾‾‾‾‾‾‾‾‾

⎷


http://en.wikipedia.org/wiki/Parseval's_theorem
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Example 4
Compute the average power of a pulse train for which the pulse width is  (duty cycle 50%). Use the
previous result:

as your starting point.

Power Spectrum

The power spectrum of signal is the sequence of average powers in each complex harmonic: . For
real perodic signals the power spectrum is a real even sequence as .

T/2

= .Cn
A
w

sin(kπ/w)
kπ/w

|Ck |2

| = | = |C−k|2 C∗
k |2 Ck |2
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This is the power spectrum for a pulse with width .

Note that most of the power is concentrated at DC and in the first seven harmonic components. That is
in the frequency range  rad/s.

T/8

[−14π/T, + 14π/T]
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Total Harmonic Distortion
Suppose that a signal that is supposed to be a pure sine wave of amplitude A is distorted as shown
below

This can occur in the line voltages of an industrial plant that makes heavy use of nonlineear loads such
as electric arc furnaces, solid state relays, motor drives, etc (E.g. Tata Steel!)

THD Defined
Clearly, some of the harmonics for  are nonzero. One way to characterie the distortion is to
compute the ratio of average power in all the harmonics that "should not be present", that is for ,
to the total average power of the distorted sine wave. The square-root of this ratio is called the total
harmonic distortion (THD) of the signal.

k ≠ ± 1
k > 1
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If the signal is real and based on a sine wave (that is odd), then  and

and we can define the THD as the ratio of the RMS value for all the harmonics for  (the distortion)

to the RMS of the fundamental which is 

Computation of THD

= 0Ck

=fRMS 2|∑
k= 1

∞
Ck |2

‾ ‾‾‾‾‾‾‾‾‾

⎷


K > 1
:2| |C1

2‾ ‾‾‾‾‾√

THD = 100 %
∑
k= 2

∞
| |Ck

2

| |C1
2

‾ ‾‾‾‾‾‾‾‾

⎷
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Steady-State Response of an LTI System to a Periodic
Signal
The response of an LTI system with impulse response  to a complex exponential signal  is the
same complex exponential multiplied by a complex gain: , where:

In particular, for , the output is simply .

The complex functions  and  are called the system's transfer function and frequency
response, respectively.

h (t) est

y(t) = H(s)est

H(s) = h (τ) dτ.∫
∞

−∞
e−sτ

s = jω y(t) = H(jω)ejωt

H(s) H(jω)
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By superposition
The output of an LTI system to a periodic function with period  represented by a Fourier series is given
by:

where  is the fundamental frequency.

Thus  is a Fourier series itself with coefficients :

Implications of this important result
The effect of an LTI sustem on a periodic input signal is to modify its Fourier series through a
multiplication by its frequency response evaluated at the harmonic frquencies.

Illustration
This picture below shows the effect of an LTI system on a periodic input in the frequency domain.

T

y(t) = H(jk )∑
k= −∞

∞
Ck Ω0 ejk tΩ0

= T/2πΩ0

y(t) Dk

= H(jk )Dk Ck Ω0
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Filtering
A consequence of the previous result is that we can design a system that has a desirable frequency
spectrum  that retains certain frequencies and cuts off others.

We will return to this idea later.

End of Second Hour
Summary

Line spectra
Power in periodic signals
Steady-state response of an LTI system to a periodic signal

Next Time

The Fourier Transform

Answers
Given

Is the function even or odd? even !
Does the signal have half-wave symmetry? No!
What are the cosequencies of symmetry on the form of the coefficients ?  will be real
values. Trig. equivalent no sine terms.
What function do we actually need to integrate to compute ? We only need to integrate
between the limits 

H(jk )Ω0

= f (t) d( t)Ck
1

2π ∫
π

−π
e−jk( t)Ω0 Ω0

f (t) = f (−t)

Ck Ck

Ck
−π/w → π/w

= A d( t) = d( t)Ck
1

2π ∫
π/w

−π/w
e−jk( t)Ω0 Ω0

A
2π ∫

π/w

−π/w
e−jk( t)Ω0 Ω0
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Solution: DC component!

or

Harmonic coefficients!

Exponential Fourier Series!

Solution 4
 so:

Write down an expression for  using Parseval's Theorem

P

sinc  for  even ( ) so...?

= = ( + )C0 ωtA
2π

∣
∣∣
π/w

−π/w

A
2π

π
w

π
w

=C0
A
w

= = ( ) = sin( )Ck
A

−jk2π
e−jk(ωt) ∣

∣∣
π/w

−π/w

A
kπ

−ejkπ/w e−jkπ/w

j2
A
kπ

kπ
w

=Ck
A
w

sin (kπ/w)
kπ/w

f (t) = ∑
k= −∞

∞ A
w

sin(kπ/w)
kπ/w e−k tΩ0

w = 2

= .Cn
A
2

sin(kπ/2)
kπ/2

P

P = = = ( + 2 )∑
k= −∞

∞
| |Ck

2 ∑
k= −∞

∞
sinc∣

∣∣
A
2

kπ
2

∣
∣∣
2

A2 1
4 ∑

k= 1

∞
sinc∣

∣∣
1
4

kπ
2

∣
∣∣
2

(kπ/2) = 0 k k = 0, 2, 4, 6, …
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P for k odd

 for  odd ( ) so...?

P after eliminating sine

Check P from f(t)

P = ( + ) = +A2 1
4

1
2 ∑

k= 1,3,5,…

∞
sinc∣
∣∣

kπ
2

∣
∣∣
2

A2
⎛
⎝
⎜⎜

1
4

1
2 ∑

k= 1,3,5,…

∞ ∣

∣
∣
∣
sin kπ

2
kπ
2

∣

∣
∣
∣

2⎞
⎠
⎟⎟

sin(kπ/2) = 1 k k = 1, 3, 5, 7, …

P = ( + [1 + + + …]) = ( + [ ])A2 1
4

2
π2 ∑

k= 1,3,5,…

∞ 1
9

1
25 A2 1

4
2

π2
π2

8

P = A2

2

P = |f (t) dωt = |A dωt = ( + ) = .1
2π ∫

π/2

−π/2
|2 1

2π ∫
π/2

−π/2
|2 A2

2π
π
2

π
2

A2

2


