
30/04/2018 fft

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week10/fft.ipynb?download=false 1/16

In []:

cd matlab
pwd

The Fast Fourier Transform

Scope and Background Reading
This session introduces the fast fourier transform (FFT) which is one of the most widely used numerical
algorithms in the world. It exploits some features of the symmetry of the computation of the DFT to reduce
the complexity to something that takes order () complex operations to something that takes order

 () operations.

The FFT is to be found in all manner of signal and image processing algorithms, and because it is more
efficient than the DFT, you will find it exploited in hundreds of signal processing applications.

As one example, it turns out that the computation of the convolution of two long DT sequences is more
efficient if the FFT of the two signals is taken, the product of the frequency spectra is computed the Inverse
DFT of the result is computed.

In this presentation, we will not go through the mathematical development of the FFT, please read section
10.6 of the textbook if you want the details. Here we will concentrate on the benefits to be gained by using
the FFT and give some examples of its use in MATLAB.

The material in this presentation and notes is based on Chapter 10 of Steven T. Karris, Signals and Systems:
with Matlab Computation and Simulink Modelling, 5th Edition
(http://site.ebrary.com/lib/swansea/docDetail.action?docID=10547416) from the Required Reading List.

Agenda

The inefficiency of the DFT

The FFT - a sketch of its development

FFT v DFT

Two examples

The inefficiency of the DFT
Consider a signal whose highest frequency is 18 kHz, the sampling frequency is 50 kHz, and 1024 samples
are taken, i.e., .

N 2 O()N 2

NlogN O(N logN)

N = 1024

http://site.ebrary.com/lib/swansea/docDetail.action?docID=10547416

30/04/2018 fft

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week10/fft.ipynb?download=false 2/16

The time required to compute the entire DFT would be:

To compute the number of operations required to complete this task, let us expand the N-point DFT defined
as:

Then

It is worth remembering that

Since is a complex number, the computation of any frequency component requires
complex multiplications and complex additions

 complex arithmetic operations are required to compute any frequency component of

If we assume that is real, then only of the components are unique.

Therefore we would require complex operations to compute the entire frequency
spectrum.

For our example, the -point DFT, would require complex
operations

These would have to be completed in 20.48 ms.

This may be possible with modern computing hardware, perhaps even in a mobile phone, but it
seems impractical.

Fortunately, many of the terms in the computation are unity ().

Moreover, because the points are equally spaced points on the unit circle;

t = = 20.48ms
1024 samples

50 × samples per second103

X[m] = x[n]∑
n=0

N−1

Wmn
N

X[0]

X[1]

X[2]

X[N − 1]

=

=

=

⋯

=

x[0] + x[1] + x[1] +⋯ + x[N − 1]W 0
N W 0

N W 0
N W 0

N

x[0] + x[1] + x[1] +⋯ + x[N − 1]W 0
N W 1

N W 2
N WN−1

N

x[0] + x[1] + x[1] +⋯ + x[N − 1]W 0
N W 2

N W 4
N W

2(N−1)

N

x[0] + x[1] + x[1] +⋯ + x[N − 1]W 0
N WN−1

N W
2(N−1)

N W
(N−1)2

N

= = 1.W 0
N e−j (0)

2π

N

W i
N X[k] N

N

2N X[k].1

x[n] N/2 |X[m]|

2N × N/2 = N 2

2

N = 1024 = 1, 048, 57610242

WN = 1

W i
N

30/04/2018 fft

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week10/fft.ipynb?download=false 3/16

Because is a power of 2 the points on the upper-half plane (range are the mirror
image of the points on the lower half plane range ;

Thus, there is a great deal of symmetry in the computation that can be exploited to simplify the
computation and reduce the number of operations considerably to a much more manageable

 operations .

This is possible with the algorithm called the FTT (https://en.wikipedia.org/wiki/Fast_Fourier_transform) (fast
Fourier transform) that was originally developed by James Cooley
(https://en.wikipedia.org/wiki/James_Cooley) and John Tukey (https://en.wikipedia.org/wiki/John_Tukey) and
considerably refined since.

The Fast Fourier Transform (FFT)
The FFT is very well documented, including in the text book, so we will only sketch its development and
present its main result.

Much of the development follows from the properties of the rotating vector.

which results in some simplifications and mathematical short-cuts when is a power of 2.

The most useful properties are:

Representing

N 0 < θ < π

π < θ < 2π

N Nlog2
3

4

=WN e−
j2π

N

N

WN
N

WN/2
N

WN/4
N

W 3N/4
N

W kN
N

W kN+r
N

W k
2N

=

=

=

=

=

=

=

= = 1.e−j N
2π

N e−j2π

= = −1.e−j
2π

N

N

2 e−jπ

= = −j.e−j
2π

N

N

4 e−jπ/2

= = j.e−j
2π

N

3N

4 e−j3π/2

= = 1, k = 0, 1, 2,…e−j kN
2π

N e−j2π

= 1. = .e−j kN
2π

N e−j r
2π

N W r
N W r

N

= = .e
−j k

2π

2N e−j
2π

N

k

2 W k/2
N

X[0]

X[1]

X[2]

X[N − 1]

=

=

=

⋯

=

x[0] + x[1] + x[1] +⋯ + x[N − 1]W 0
N W 0

N W 0
N W 0

N

x[0] + x[1] + x[1] +⋯ + x[N − 1]W 0
N W 1

N W 2
N WN−1

N

x[0] + x[1] + x[1] +⋯ + x[N − 1]W 0
N W 2

N W 4
N W

2(N−1)

N

x[0] + x[1] + x[1] +⋯ + x[N − 1]W 0
N WN−1

N W
2(N−1)

N W
(N−1)2

N

https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/James_Cooley
https://en.wikipedia.org/wiki/John_Tukey

30/04/2018 fft

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week10/fft.ipynb?download=false 4/16

in matrix form:

This is a complex Vandemonde matrix (https://en.wikipedia.org/wiki/Vandermonde_matrix) and it is more
compactly expressed as:

The algorithm developed by Cooley and Tukey is based on matrix decomposition methods, where the matrix
 is factored into smaller matrices, that is:

where is chosen as or .

Each row of the matrices on the right side of the decomposition, contains only two, non-zero terms, unity
and . Then the vector

The FFT computation starts with matrix . It operates on producing a row vector, and each
component of the row vector is obtained by one multiplication and one addition. This is because there are
only two non-zero elements on a given row, and one of those elements is unity. Since there are
components of , there will be complex multiplications and complex additions.

This new vector is then operated on by the matrix, then on and so on, until the entire operation
is completed.

It appears that the entire operation would require complex additions and also
complex additions.

However, since , , and other simplifications, it is estimated that only about half of these,
that is, total arithmetic operations are required by the FFT versus the required by the DFT .

= .

⎡

⎣

⎢⎢⎢⎢⎢⎢

X[0]

X[1]

X[2]

⋮

X[N − 1]

⎤

⎦

⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

W 0
N

W 0
N

W 0
N

⋯

W 0
N

W 0
N

W 1
N

W 2
N

⋯

WN−1
N

W 0
N

W 2
N

W 4
N

⋯

W
2(N−1)

N

⋯

⋯

⋯

⋯

⋯

W 0
N

WN−1
N

W
2(N−1)

N

⋯

W
(N−1)2

N

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢

x[0]

x[1]

x[2]

⋮

x[N − 1]

⎤

⎦

⎥⎥⎥⎥⎥⎥

X[m] = x[n]WN

WN L

= ⋯WN W1W2W3 WL

L L = Nlog2 N = 2L

W k
N

X[m] = ⋯ x[n].W1W2W3 WL

WL x[n]

N

x[n] N N

WL−1 WL−1

NL = N Nlog2 N Nlog2

= 1W 0
N = −1WN/2

N

N Nlog2 N 2 5

https://en.wikipedia.org/wiki/Vandermonde_matrix

30/04/2018 fft

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week10/fft.ipynb?download=false 5/16

DFT and FFT Comparisons
Under the assumptions about the relative efficiency of the DFT and FFT we can create a table like that
shown below:

DFT FFT FFT/DFT

N %

8 64 24 37.5

16 256 64 25

32 1024 160 15.6

64 4096 384 9.4

128 896 5.5

256 2048 3.1

512 4608 1.8

1024 1

2048 0.5

As you can see, the efficiy of the FFT actual gets better as the number of samples go up!

FFT in MATLAB
The FFT algorithm is implemented, in MATLAB, as the function fft. We will conclude by working through
Exercises 6 and 7 from section 10.8 of Karris.

N 2 N Nlog2

16, 384

65, 536

261, 144

1, 048, 576 10, 240

4, 194, 304 22, 528

30/04/2018 fft

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week10/fft.ipynb?download=false 6/16

Example 1
Plot the Fourier transform of the rectangular pulse shown below, using the MATLAB fft func-tion. Then, use
the ifft function to verify that the inverse transformation produces the rectangular pulse.

FFT Example 1
The rectangular pulse can be produced like so

30/04/2018 fft

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week10/fft.ipynb?download=false 7/16

In [10]:

x = [linspace(-2,-1,50) linspace(-1,1,100) linspace(1,2,50)];
y = [linspace(0,0,50) linspace(1,1,100) linspace(0,0,50)];
plot(x,y)

and the FFT is produced as

30/04/2018 fft

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week10/fft.ipynb?download=false 8/16

In [11]:

plot(x, abs(fft(y)))

unwind

30/04/2018 fft

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week10/fft.ipynb?download=false 9/16

In [12]:

plot(x, abs(fftshift(fft(y))))

The inverse FFT is obtained with

30/04/2018 fft

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week10/fft.ipynb?download=false 10/16

In [13]:

plot(x, ifft(fft(y)))

30/04/2018 fft

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week10/fft.ipynb?download=false 11/16

Example 2

FFT Example 2
The triangular pulse is obtained with

30/04/2018 fft

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week10/fft.ipynb?download=false 12/16

In [14]:

x = linspace(-1,1,100);
y = [linspace(0,1,50) linspace(1,0,50)];
plot(x,y)

and the FFT is obtained with

30/04/2018 fft

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week10/fft.ipynb?download=false 13/16

In [15]:

plot(x, abs(fftshift(fft(y))))

The inverse FFT is obtained with

30/04/2018 fft

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week10/fft.ipynb?download=false 14/16

In [16]:

plot(x, ifft(fft(y)))

Summary
The inefficiency of the DFT
The FFT - a sketch of its development
FFT v DFT
Two examples

30/04/2018 fft

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week10/fft.ipynb?download=false 15/16

Homework
Read the rest of Chapter 10 of Karris from page 10.9 and make your own notes on the implementation of the
FFT.

The End?
This concludes this module.
There is some material that I have not covered, most notably is a significant amount of additional
information about Filter Design (including the use of Matlab for this) in Chapter 11 of Karris.

Footnotes
Note: addition of two complex numbers so requires 2 floating-

point additions; multiplication requires four floating-point
multiplications and two additions.

In MATLAB, complex numbers are represented internally as two 64 bit floating point operations so each
complex operation is expensive both in terms of computing time and working memory space. And the result
of an N-point DFT will require twice the memory of the original sequence, assuming that it is stored as
floating point real numbers, considerably 16 times the storage is needed if the original sequence is the result
of sampling by, say, an 8 bit ADC.

Of course, modern 64 bit mirocprocessers have hardware support for floating point operations and so these
operations take a minumum number of machine cycles. Digital Signal Processors and Graphic Processing
Units, probably have hardware support for complex arithmetic too. Nonethess, complex arithmetic is an
expensive operation, so any simplifications we can make will be valuable.

Even if we do not have a real sequence, we only need to compute the first values of the spectrum
because the sequence for from are complex conjugates, in the reverse order,
of the sequence of for . This is easy to prove by looking at the geometry of the unit
circle in the z-plane.

If , complex operations.

The Inverse FFT (IFFT) follows by noting that the rotation vector used in its computation is the complex
conjugate

 Karris goes further in showing how the decomposition used to implement the FFT can be further be
understood by considering even and odd decompositions. We do not have time to cover this in this module,
but you are invited to read further if you are interested. You'll also find that most text books on Digital Signal
Processing will cover the FFT and give more or less understandable presentations of the way the algorithm
works.

1 (a + jb) + (c + jd) = (a + b) + j(b + d)

(a + jb)(c + jd) = (ac − bd) + j(ad + bc)

2 N/2

X[k] N/2 + 1 < k <= N − 1

X[k] 0 <= k < N/2

3 N = 1024 N N = 1024 ∗ 10 = 10, 240log2

4

.W−1
N

5

30/04/2018 fft

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week10/fft.ipynb?download=false 16/16

Solutions

Example 1
See script fft_ex1.m (https://github.com/cpjobling/EG-247-
Resources/blob/master/week10/matlab/fft_ex1.m).

Example 2
See script fft_ex2.m (https://github.com/cpjobling/EG-247-
Resources/blob/master/week10/matlab/fft_ex2.m).

https://github.com/cpjobling/EG-247-Resources/blob/master/week10/matlab/fft_ex1.m
https://github.com/cpjobling/EG-247-Resources/blob/master/week10/matlab/fft_ex2.m

