30/04/2018 fft

In []:

cd matlab
pwd

The Fast Fourier Transform

Scope and Background Reading

This session introduces the fast fourier transform (FFT) which is one of the most widely used numerical
algorithms in the world. It exploits some features of the symmetry of the computation of the DFT to reduce
the complexity to something that takes order N2 (O(N2)) complex operations to something that takes order
NlogN (O(N log N)) operations.

The FFT is to be found in all manner of signal and image processing algorithms, and because it is more
efficient than the DFT, you will find it exploited in hundreds of signal processing applications.

As one example, it turns out that the computation of the convolution of two long DT sequences is more
efficient if the FFT of the two signals is taken, the product of the frequency spectra is computed the Inverse
DFT of the result is computed.

In this presentation, we will not go through the mathematical development of the FFT, please read section
10.6 of the textbook if you want the details. Here we will concentrate on the benefits to be gained by using
the FFT and give some examples of its use in MATLAB.

The material in this presentation and notes is based on Chapter 10 of Steven T. Karris, Signals and Systems:
with Matlab Computation and Simulink Modelling, 5th Edition
(http://site.ebrary.com/lib/swansea/docDetail.action?docID=10547416) from the Required Reading List.

Agenda

» The inefficiency of the DFT

» The FFT - a sketch of its development
o FFT vDFT

» Two examples

The inefficiency of the DFT

Consider a signal whose highest frequency is 18 kHz, the sampling frequency is 50 kHz, and 1024 samples
are taken, i.e., N = 1024.

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week 10/fft.ipynb?download=false 1/16

http://site.ebrary.com/lib/swansea/docDetail.action?docID=10547416

30/04/2018 fft

The time required to compute the entire DFT would be:

1024 samples
t= = 20.48 ms

~ 50x 10° samples per second

To compute the number of operations required to complete this task, let us expand the N-point DFT defined
as:

N—-1
X[m] =) x[n]Wy"
n=0

Then
X[0] = x[O]Wy + x[1IWY + x[1]W) + -+ + x[N — 1]Wy

X[1] = x[O]WZ(\)/ +.X[1]W]\1] +x[1]W1%/ + o + x[N — 1]W11\>’—]
X[2] = x[0IW0 + x[1IW2 + x[1]W3 + - + x[N — []W "D

« It is worth remembering that
0 — =)
WN =e /7w =1.

» Since W]{, is a complex number, the computation of any frequency component X[k] requires N
complex multiplications and N complex additions

« 2N complex arithmetic operations are required to compute any frequency component of X [k]."
« If we assume that x[n] is real, then only N/2 of the | X[m]| components are unique.

 Therefore we would require 2N X N/2 = N? complex operations to compute the entire frequency
spectrum.?

» For our example, the N = 1024-point DFT, would require 1024% = 1,048,576 complex
operations

» These would have to be completed in 20.48 ms.

» This may be possible with modern computing hardware, perhaps even in a mobile phone, but it
seems impractical.

« Fortunately, many of the Wy terms in the computation are unity (= 1).

» Moreover, because the Wzl\./ points are equally spaced points on the unit circle;

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week 10/fft.ipynb?download=false 2/16

30/04/2018 fft

» Because N is a power of 2 the points on the upper-half plane (range 0 < 6 < 7 are the mirror
image of the points on the lower half plane range 7 < 0 < 2r;

» Thus, there is a great deal of symmetry in the computation that can be exploited to simplify the
computation and reduce the number of operations considerably to a much more manageable
N log, N operations®.

This is possible with the algorithm called the FTT (https://en.wikipedia.org/wiki/Fast Fourier transform) (fast
Fourier transform) that was originally developed by James Cooley.

(https://en.wikipedia.org/wiki/lJames Cooley) and John Tukey (https://en.wikipedia.org/wiki/John Tukey) and
considerably refined since.

The Fast Fourier Transform (FFT)

The FFT is very well documented, including in the text book, so we will only sketch its development and
present its main result.

Much of the development follows from the properties of the rotating vector.*

J2n

WN = N

which results in some simplifications and mathematical short-cuts when N is a power of 2.

The most useful properties are:

W2 = ¢T3 = " = -1
. 21

W]Z\Y/4 =V 3 _ejﬂ.'/2 = —j
. 27 3N

W]%,NM —ed NG =¢ j37/2 =]

. 27 .2

Kk — =k _ Lk
Wiy =e’ " =en2 =Wg-.

Representing

X[0] = x[O]Wy + x[1IWY + x[1]W}) + -+ + x[N — 1]Wy
X[1] = x[0]WY + x[1]W} + x[1IW2 + - + x[N — 1]Wy ™
X[2] = x[0]W9 + x[1]W2 + x[1IW} + - + x[N — W~

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week 10/fft.ipynb?download=false

3/16

https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://en.wikipedia.org/wiki/James_Cooley
https://en.wikipedia.org/wiki/John_Tukey

30/04/2018 fft

in matrix form:

xo] 1 [Wy Wy Wy o Wy T xo]
X[1] Wy Wy wi oo Wy x[1]
X2l |=|wy w2 wy e Wy K2

| X[N - 1] | R szvv-l Wﬁ(N‘“ W](VN—I)2 | | x[N — 1] |

This is a complex Vandemonde matrix (https://en.wikipedia.org/wiki/Vandermonde matrix) and it is more
compactly expressed as:

X[m] = Wyx[n]

The algorithm developed by Cooley and Tukey is based on matrix decomposition methods, where the matrix
Wy is factored into L smaller matrices, that is:

Wn = WiW, W3- Wy,
where L is chosen as L = log, N or N = 2%,

Each row of the matrices on the right side of the decomposition, contains only two, non-zero terms, unity
and Wll\j. Then the vector

X[m] = W1W2W3 WLX[I’L].

The FFT computation starts with matrix W . It operates on X[7] producing a row vector, and each
component of the row vector is obtained by one multiplication and one addition. This is because there are
only two non-zero elements on a given row, and one of those elements is unity. Since there are N
components of x[n], there will be N complex multiplications and N complex additions.

This new vector is then operated on by the W; _; matrix, then on W;_; and so on, until the entire operation
is completed.

It appears that the entire operation would require NL = N log, N complex additions and also N log, N
complex additions.

However, since Wz(\)/ =1, Wl{y/z = —1, and other simplifications, it is estimated that only about half of these,
that is, N log, N total arithmetic operations are required by the FFT versus the N? required by the DFT®.

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week 10/fft.ipynb?download=false 4/16

https://en.wikipedia.org/wiki/Vandermonde_matrix

30/04/2018

DFT and FFT Comparisons

Under the assumptions about the relative efficiency of the DFT and FFT we can create a table like that

shown below:

fft

DFT FFT FFT/DFT
N |N? Nlog, N | %
8 64 24 37.5
16 256 64 25
32 1024 160 15.6
64 4096 384 9.4
128 |16,384 896 5.5
256 | 65,536 2048 3.1
512 (261,144 4608 1.8
1024 (1,048,576 10,240 |1
2048 (4,194,304 122,528 |0.5

As you can see, the efficiy of the FFT actual gets better as the number of samples go up!

FFT in MATLAB

The FFT algorithm is implemented, in MATLAB, as the function ££t. We will conclude by working through

Exercises 6 and 7 from section 10.8 of Karris.

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week 10/fft.ipynb?download=false

5/16

30/04/2018 fft
Example 1

Plot the Fourier transform of the rectangular pulse shown below, using the MATLAB £ £t func-tion. Then, use
the ifft function to verify that the inverse transformation produces the rectangular pulse.

£(t) A
1

> 1

FFT Example 1

The rectangular pulse can be produced like so

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week 10/fft.ipynb?download=false 6/16

30/04/2018 fft

In [10]:

X = [linspace(-2,-1,50) linspace(-1,1,100) linspace(l,2,50)];
y [linspace(0,0,50) linspace(l,1,100) linspace(0,0,50)];
plot(x,y)

0.9 .

0.8 r 7

0.7 r 7

0.6 -

and the FFT is produced as

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week 10/fft.ipynb?download=false 7/16

30/04/2018 fft

In [11]:

plot(x, abs(fft(y)))

100 T T T T T T T

an K
20§

10 R

I |
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

unwind

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week 10/{ft.ipynb?download=false 8/16

30/04/2018 fft

In [12]:

plot(x, abs(fftshift(fft(y))))

100 T T r r r T

a0 rF -

20 -

10 [1l
0 bnsnssnsnasansmsnrssnspes AN lF JI N" 1 IWNFINJH*HMMMMWW
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

The inverse FFT is obtained with

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week 10/{ft.ipynb?download=false 9/16

30/04/2018 fft

In [13]:

plot(x, ifft(fft(y)))

0.8 .

0.6 .

0.4 .

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week 10/fft.ipynb?download=false 10/16

30/04/2018 fft

Example 2

> 1

FFT Example 2

The triangular pulse is obtained with

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week 10/fft.ipynb?download=false 11/16

30/04/2018 fft

In [14]:

x = linspace(-1,1,100);
y [linspace(0,1,50) linspace(1l,0,50)];
plot(x,y)

-1 08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

and the FFT is obtained with

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week 10/fft.ipynb?download=false 12/16

30/04/2018 fft

In [15]:

plot(x, abs(fftshift(fft(y))))

a0 T T T T T T T T T

10 .

0 L | -l ™ I'Jl V‘/\, -1 I L I
-1 08 -0& -04 -02 0 0.2 0.4 0.6 0.8 1

The inverse FFT is obtained with

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week 10/fft.ipynb?download=false 13/16

30/04/2018

In [16]:

plot(x, ifft(fft(y)))

fft

0.8

0.6 s

0.4

0.2 r

02 1 1 1 1

-1 -08 085 -04 -02

Summary

» The inefficiency of the DFT

» The FFT - a sketch of its development
e FFT vDFT

» Two examples

0.2

0.4

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week 10/fft.ipynb?download=false

0.6

0.8

30/04/2018 fft

Homework

Read the rest of Chapter 10 of Karris from page 10.9 and make your own notes on the implementation of the
FFT.

The End?

» This concludes this module.
» There is some material that | have not covered, most notably is a significant amount of additional
information about Filter Design (including the use of Matlab for this) in Chapter 11 of Karris.

Footnotes

Note: addition of two complex numbers (a + jb) + (¢ + jd) = (a + b) + j(b + d) so requires 2 floating-
point additions; multiplication (a + jb)(c + jd) = (ac — bd) + j(ad + bc) requires four floating-point
multiplications and two additions.

In MATLAB, complex numbers are represented internally as two 64 bit floating point operations so each
complex operation is expensive both in terms of computing time and working memory space. And the result
of an N-point DFT will require twice the memory of the original sequence, assuming that it is stored as
floating point real numbers, considerably 16 times the storage is needed if the original sequence is the result
of sampling by, say, an 8 bit ADC.

Of course, modern 64 bit mirocprocessers have hardware support for floating point operations and so these
operations take a minumum number of machine cycles. Digital Signal Processors and Graphic Processing
Units, probably have hardware support for complex arithmetic too. Nonethess, complex arithmetic is an
expensive operation, so any simplifications we can make will be valuable.

2Even if we do not have a real sequence, we only need to compute the first N/2 values of the spectrum
because the sequence for X[k] from N/2 + 1 < k <= N — 1 are complex conjugates, in the reverse order,
of the sequence of X[k] for 0 <= k < N/2. This is easy to prove by looking at the geometry of the unit
circle in the z-plane.

3If N = 1024, Nlog, N = 1024 10 = 10, 240 complex operations.

4The Inverse FFT (IFFT) follows by noting that the rotation vector used in its computation is the complex
conjugate
-1
Wy .

5 Karris goes further in showing how the decomposition used to implement the FFT can be further be
understood by considering even and odd decompositions. We do not have time to cover this in this module,
but you are invited to read further if you are interested. You'll also find that most text books on Digital Signal
Processing will cover the FFT and give more or less understandable presentations of the way the algorithm
works.

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week 10/fft.ipynb?download=false 15/16

30/04/2018 fft

Solutions

Example 1

See script fft ex1.m (https://github.com/cpjobling/EG-247-
Resources/blob/master/week10/matlab/fft ex1.m).

Example 2

See script fft_ex2.m (https://github.com/cpjobling/EG-247-
Resources/blob/master/week10/matlab/fft ex2.m).

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week 10/fft.ipynb?download=false 16/16

https://github.com/cpjobling/EG-247-Resources/blob/master/week10/matlab/fft_ex1.m
https://github.com/cpjobling/EG-247-Resources/blob/master/week10/matlab/fft_ex2.m

