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In [ ]:

cd matlab 
pwd 

The Discrete Fourier Transform

Scope and Background Reading
This session introduces the z-transform which is used in the analysis of discrete time systems. As for the
Fourier and Laplace transforms, we present the definition, define the properties and give some applications
of the use of the z-transform in the analysis of signals that are represented as sequences and systems
represented by difference equations.

The material in this presentation and notes is based on Chapter 10 of Steven T. Karris, Signals and Systems:
with Matlab Computation and Simulink Modelling, 5th Edition
(http://site.ebrary.com/lib/swansea/docDetail.action?docID=10547416) from the Required Reading List.
Additional coverage is to be found in Chapter 12 of Benoit Boulet, Fundamentals of Signals and Systems
(http://site.ebrary.com/lib/swansea/docDetail.action?docID=10228195) from the Recommended Reading
List.

Agenda

The discrete time fourier transform (DFT)

Even and Odd Properties of the DFT

Common Properties and Theorems of the DFT

Sampling Theorem, Windows, and the Picket Fence Effect

Introduction
Fourier series: periodic and continuous time function leads to a non-periodic discrete frequency
function.
Fourier transform: non-periodic and continuous function leads to a non-periodic continuous
frequency function.
Z and inverse Z-transforms produce a periodic and continuous frequency function, since they are
evaluated on the unit circle.

http://site.ebrary.com/lib/swansea/docDetail.action?docID=10547416
http://site.ebrary.com/lib/swansea/docDetail.action?docID=10228195
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Note
Frequency spectrum of a discrete time function  is obtained from its z-transform by substituting 

 as we saw from the mapping of the s-plane to the z-plane. This is continuous as there are
an infinite number of points in the interval  to ; and it is periodic because for any point  there is an
equivalent point  later.

In practice, to compute the spectrum for a discrete time (DT) system, we only compute a finite number of
equally spaced points.

In this session, we will see that a periodic and discrete time function results in a periodic and discrete
frequency function.

For convenience we summarize these facts in a table:

Topic Time Function Frequency Function

Fourier Series Continuous, Periodic Discete, Non-Periodic

Fourier Transform Continuous, Non-Periodic Continuous, Non-Periodic

Z Transform Discrete, Non-Periodic Continuous, Periodic

Discrete Fourier Transform Discrete, Periodic Discrete, Periodic

List of Abbreviations
CT -- Continous Time
DT -- Discrete Time
DF - Discrete frequency
DFT -- Discrete (Time) Fourier Transform
FFT -- Fast Fourier Transform

Notation
In the following we shall denote a DT signal as  and its discrete frequency function as .

Z-Transform
Recall that

The value of this function on the unit circle in the Z-plane will be

f [n]

z = =esT ejωT

0 2π ωT

ωT + 2Nπ

x[n] X[m]

F(z) = f [n] = f [n] .∑
n=0

∞

z−n

F( ) = f [n] .ejωT

∑
n=0

∞

e−jnωT
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This is an infinite sum. So to compute it, we need to truncate it.

Let's assume that instead of an infinite number of points, we have , equally distributed around the unit
circle, then the truncated version will be:

where

and .

We refer to the equation

as the N-point Discrete-time Fourier Transform (DFT) of .

The inverse DFT is defined as

for .

Note the symmetry of the DFT and the Inverse DFT!

In general, the DFT is complex, and thus it can be expressed as

for .

Since

the DFT can be expresssed as

N

X[m] = x[n]∑
n=0

N−1

e−j2π
mn

N

ω =  ( )m
2π

N

m = 0, 1, 2,… ,N − 1

X[m] = x[n]∑
n=0

N−1

e−j2π
mn

N

x[n]

x[n] = X[m]
1

N ∑
m=0

N−1

ej2π
mn

N

n = 0, 1, 2,… ,N − 1

X[m] = ℜ {X[m]} + ℑ {X[m]}

m = 0, 1, 2,… ,N − 1

= cos( ) + j sin( )e−j2π
mn

N
2πmn

N

2πmn

N

X[m] = x[n] = x[n] cos( ) + j x[n] sin( ).∑
n=0

N−1

e−j2π
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For  this reduces to

Then the real part of  is

and the imaginary part is

.

Note that the summations are from 1 to  because  is covered in the real term, and as  is
real, it is zero in the corresponding imaginary term.

Example 1
A discrete time signal is defined by the sequence , , , , and  for
all other values of . Compute the frequency components .

n = 0

X[m] = x[0].

X[m]

ℜ {X[m]} = x[0] + x[n] cos( ) for m = 0, 1, 2,… ,N − 1∑
n=1

N−1
2πmn

N

ℑ {X[m]} = − x[n] cos( ) for m = 0, 1, 2,… ,N − 1∑
n=1

N−1
2πmn

N

N − 1 n = 0 x[0]

x[0] = 1 x[1] = 2 x[2] = 2 x[3] = 1 x[n] = 0

n X[m]



30/04/2018 dft

http://localhost:8888/nbconvert/html/dev/EG-247-Resources/week10/dft.ipynb?download=false 5/25

Solution 1
Compute the  point DFT for .

Compute the four point DFT for .

Add these together to find .

N ℜ {X[m]}

ℑ {X[m]}

X[m]
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Example 2
Use the inverse DFT to compute the discrete-time sequence  from .x[n] X[m]
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Solution 2
Write down the expression  in terms of .

Compute  from this result.

Repeat for ,  and .

x[n] X[m]

x[0]

x[1] x[2] x[3]
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Simulink model of the DFT
See dft_ex10_1.slx (https://github.com/cpjobling/EG-247-
Resources/blob/master/week10/matlab/dft_ex10_1.slx?raw=true)

In [12]:

dft_ex10_1 

https://github.com/cpjobling/EG-247-Resources/blob/master/week10/matlab/dft_ex10_1.slx?raw=true
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Try inputting your student number.

MATLAB model of the DFT
Karris Example 10.1. To successfully run this script you will need to download the functions dft.m
(https://github.com/cpjobling/EG-247-Resources/blob/master/week10/matlab/dft.m) and idft.m
(https://github.com/cpjobling/EG-247-Resources/blob/master/week10/matlab/idft.m) and make them
available on your MATLABPATH.

In [13]:

xn = [1, 2, 2, 1]; 

In [14]:

open dft 

In [15]:

Xm = dft(xn,4) 

In [16]:

open idft 

Xm = 
 
   6.0000 + 0.0000i  -1.0000 - 1.0000i   0.0000 - 0.0000i  -1.0000 + 
1.0000i 
 

https://github.com/cpjobling/EG-247-Resources/blob/master/week10/matlab/dft.m
https://github.com/cpjobling/EG-247-Resources/blob/master/week10/matlab/idft.m
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In [17]:

xn = idft(Xm,4) 

A useful compact notation
The term

is a rotating vector where the range  is divided into  equal segments.

It is convenient to represent this as , that is

and consequently,

Example 3
Compute the complex numbers represented by the rotating vector 

/Ne−j(2π)

0 <= θ <= 2π 360/N

WN

=WN e−
j2π

N

= .W−1
N e

j2π

N

W8

xn = 
 
   1.0000 - 0.0000i   2.0000 - 0.0000i   2.0000 + 0.0000i   1.0000 + 
0.0000i 
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Solution 3
Rewrite  in exponential form

Visualize on unit circle

Complete this table

Real Imaginary

0 0 1 0 1

W8

n θ W n
8
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Using this notation, the DFT and inverse DFT pairs are represented as:

and

MATLAB implementation of DFT
Using the W notation, it is very easy to write a function to implement the DFT. For example, consider dft.m
(https://github.com/cpjobling/EG-247-Resources/blob/master/week10/matlab/dft.m):

function [ Xm ] = dft( xn, N ) 
% Computes Discrete Fourier Transform 
% ----------------------------------- 
% [Xm]  = dft(xn, N) 
% Xm = DFT coeff. array over 0 <= m <= N-1 
% xn = N-point finite-duration sequence 
%  N = length of DFT 
% 
n = [0:1:N-1];          % row vector for n 
m = [0:1:N-1];          % row vector for m 
WN = exp(-j*2*pi/N);    % Wn factor 
nm = n'*m;              % creates an N by N matrix of nm values 
WNnm = WN .^ nm;        % DFT matrix 
Xm = xn * WNnm;         % row vector of DFT coefficients 

Similarly for the inverse DFT idft.m (https://github.com/cpjobling/EG-247-
Resources/blob/master/week10/matlab/idft.m):

function [ xn ] = idft( Xm, N ) 
% Computes Inverse Discrete Fourier Transform 
% ------------------------------------------- 
% [xn]  = idft(Xm, N) 
% xn = N-point sequence over 0 <= n <= N-1 
% Xm = DFT coeff. array over 0 <= m <= N-1 
%  N = length of DFT 
% 
n = [0:1:N-1];          % row vector for n 
m = [0:1:N-1];          % row vector for m 
WN = exp(-j*2*pi/N);    % Wn factor 
nm = n'*m;              % creates an N by N matrix of nm values 
WNnm = WN .^ (-nm);     % DFT matrix 
xn = (Xm * WNnm)/N;     % row vector for IDFT values 

X[m] = x[n]∑
n=0

N−1

W nm
N

x[n] = x[n]
1

N ∑
n=0

N−1

W−nm
N

https://github.com/cpjobling/EG-247-Resources/blob/master/week10/matlab/dft.m
https://github.com/cpjobling/EG-247-Resources/blob/master/week10/matlab/idft.m
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Notes
In the remainder of these notes, the correspondence between  and  will be written

In example 2, we found that, although the DT sequence  was real, the discrete frequency (DF) sequence
was complex. However, in most applications we are interested in the magnitude and phase of the DF, that is

and

.

Example 4
Use MATLAB to compute the magnitude of the frequency components of the following DT function:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1.0 1.5 2.0 2.3 2.7 3.0 3.4 4.1 4.7 4.2 3.5 3.6 3.2 2.9 2.5 1.8

We will compute this in class and make some comments afterwards.

In [18]:

xn = [ 1, 2, 3, 2.5, 1.5, 0.5,... 
   -0.5, -1.5, -2.5, -0.5,... 
   0.25, 1.25, 2, 1.5, 1, 0.5]; 

x[n] X[m]

x[n] ⇔ X[m]

x[n]

|X[m]|

∠X[m]

n

x[n]
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In [19]:

stem([0:15],xn),xlabel('n'),ylabel('x[n]'),title('Discrete Time Sequence') 

In [20]:

Xm = dft(xn,16); 
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In [21]:

stem([0:15],abs(Xm)),xlabel('m'),ylabel('|X[m]|'),title('Discrete Frequency Sequ
ence') 
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Points to note:

 is the DC component of the DT sequence.
After the  term, the magnitude of the frequency values for the range 

 are the mirror image of the values for the range .
This is not a coincidence, in fact if  is an N-point real discrete time function, only  of the
frequency components of  are unique.

Even and Odd Properties of the DFT
The discrete time and discrete frequency functions are defined as even or odd in according to the following
relations:

Even time function: 

Odd time function: 

Even frequency function: 

Odd frequency function: 

Even and odd properties of the DFT

Discrete time sequence Discrete frequency sequence 

Real
Complex 
Real part is Even 
Imaginary part is Odd

Raal and Even Real and Even

Raal and Odd Imaginary and Even

Imaginary
Complex 
Real part is Odd 
Imaginary part is Even

Imaginary and Even Imaginary and Even

Imaginary and Odd Real and Odd

It is not difficult to prove these by expanding

into its real and imaginary parts using Euler's identity and considering the cosine (even) and sine (odd) terms
that result.

X[0] = 12

|X[8]| = 1.4872

9 <= m <= 15 0 <= m <= 7

x[n] N/2

|X[m]|

f [N − n] = f [n]

f [N − n] = −f [n]

F[N − m] = F[m]

F[N − m] = −F[m]

f [n] F[m]

X[m] = x[n]∑
n=0

N−1

Wmn
N
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Common Properties and Theorems of the DFT
We denote the DFT and inverse DFT using as follows:

and

We then state the following useful properties. For proofs, see Karris, 10.3. Not examined.

Linearity

Time-shift

Frequency shift

Time convolution

Frequency convolution

X[m] =  {x[n]}

x[n] = {X[m]}
−1

a [n] + b [n] +⋯ ⇔ a [m] + b [m] +⋯x1 x2 X1 X2

x[n − k] ⇔ X[m]W km
n

x[n] ⇔ X[m − k]W−km
n

x[n] ∗ h[n] ⇔ X[m]H[m]

x[n]y[n] ⇔ X[k]Y[m − k] ⇔ X[m] ∗ Y[m]
1

N ∑
k=0

N−1
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Sampling Theorem, Windows, and the Picket Fence Effect

Sampling Theorem
The sampling theorem known as Nyquist/Shannon's Sampling Theorem (see wp>Nyquist/Shannon Sampling
Theorem (https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem)), states that *if a
continuous time function,  is band-limited with its highest frequency component less that , then 
can be completely recovered from its sampled values, , f the sampling frequency is equal or greater than

.

For example, say the highest frequency component in a signal is 18 kHz, this signal must be sampled at 
 kHz or higher so that it can be completely specified by its sampled values. If the sampled

frequency remains the same, i.e., 36 kHz, and the highest frequency in the signal is increased, to say 25 kHz,
this signal cannot be recovered by a Digital to Analogue Converter (DAC).

Since many real signals are not band limited, a typical digital signal processing system will include a low-
pass filter, often called a pre-sampling-filter or simply a pre-filter, to ensure that the highest frequency signal
allowed into the system will be equal or less than the sampling frequency so that the signal can be
recovered. The highest frequency allowed in the system is referred to as the Nyquest frquency denoted as 

.

If the signal is not band limited, or the sampling frequency is too low, the spectral components of the signal
will overlap each other and this is called aliasing. To avoid aliasing, we must increase the sampling rate.

Windowing
A DT signal may have an infinite length; in this case it must be limited to a finite interval before it is sampled.
We can terminate the signal at a defined number of terms by multiplying it by a window function. There are
several window functions that are used in practice such as the rectangular, triangular, Hanning, Hamming,
Kaiser, etc. Window functions, and there design, are outside the scope of this module, but are discussed in
Appendix E of Karris.

All I will say here is that the window function must be carefully chosen to avoid the signal being terminated
too abrubtly and causing leakage -- that is a spread of the spectrum outside the bounds imposed by the
window.

Picket fence
A third problem introduced by the DFT is the fact that as the spectrum of the DFT is not continuous,
important frequencies may fall between spectrum lines and therefore not be detected. This is called the
picket fence effect, named after the white fences seen in the suburbs in US movies. A way round this is to
pad the signal with zeros so that the effective period changes and therefore changes the locations of the
spectral lines.

You should remember that the sampling theorem states under what conditions a signal may be recovered. It
does not guarantee that all significant frequencies will be present in the sampled signal.

f (t) W f (t)

f [n]

2W

2 × 18 = 36

fn

https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
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A summary of the important features of sampling and the DFT
 is the number of samples in frequency.
 sampling frequency, samples per seconds.
 period of a periodic DT function.
 interval between the  samples in time period .
 period of a periodic DF function.
 interval between the  samples in frequency period .

The relationships between these quantities are:

We will add these quantities to the results of Example 4 in class.

N

fs
Tt

ts N Tt

ff
Fs N Tf

=tt
Tt

N

=fs
1

tt

=tf
Tf

N

=tt
1

Tf

=ff
1

Tt
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To reproduce this plot use repeat.m (https://github.com/cpjobling/EG-247-
Resources/blob/master/week10/matlab/repeat.m).

https://github.com/cpjobling/EG-247-Resources/blob/master/week10/matlab/repeat.m
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Example 5
The period of a periodic DT function is 0.125 ms and it is sampled at 1024 equally spaced points. It is
assumed that with this number of samples, the sampling theorem is satisfied and thus there will be no
aliasing.

1. Compute the interval  between samples for the periodic signal
2. Compute the period  of the frequency spectrum in kHz
3. Compute the interval  between frequency components in kHz
4. Compute the sampling frequency .
5. Compute the Nyquist frequency .

tt
Tf

tf
fs

fn
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Solution
To be done in class.

Compute the interval  between samples for the periodic signal

Compute the period of the frequency spectrum  in kHz

Compute the interval  between frequency components in kHz

Compute the sampling frequency .

Compute the Nyquist frequency .

tt

Tf

tf

fs

fn
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Summary
The discrete time fourier transform
Even and Odd Properties of the DFT
Common Properties and Theorems of the DFT
Sampling Theorem, Windows, and the Picket Fence Effect

Next session

The Fast Fourier Transform

(without the mathematics)

Homework
Try Exercise 1 and Exercise 2 in Karris 10.8 by hand.

For the exam, I wouldn't expect you to compute the whole sequence for a signal with more than 4 samples.
However, you will need to be able to compute the DFT  and IDFT  of an 8-point sequence for any
single value  or .

x[n] X[m]

n m
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Answers

Example 1

Example 3

Example 4
1. 8192 kHz (8.2 Mhz)
2. 8 kHz
3. 8.2 Mhz
4. 4.1 Mhz

X(0)

X(1)

X(2)

X(3)

=

=

=

=

6

− 1 − j

0

− 1 + j

= [1, + j , j,− + j ,−1,− − j ,−j, − j ]W8

1

2‾√

1

2‾√

1

2‾√

1

2‾√

1

2‾√

1

2‾√

1

2‾√

1

2‾√


